

APPENDIX C - HISTORICAL RECORDS

- 1. Proposed Site Plan Ground Water Identification
- 2. Borehole records
- 3. Drilling logs
- 4. Factual Investigation Report Ian Farmer, Feb 2008
- 5. Interpretative Report of Ground Investigation & Development Plateaus Ian Farmer March 2008
- 6. Geotechnical Overview Report Atkins, Sept 2010

5/16/2019

Page 1 | Borehole SJ36SW5 | Borehole Logs

Version 2.0.6

British **Geological Survey**

BGS ID: 156701 : BGS Reference: SJ36SW5 British National Grid (27700) : 332300,362050 NATURAL ENVIRONMENT RESEARCH COUNCIL Report an issue with this borehole

> Page 1 of 4 🔻 < Prev << Next > >>

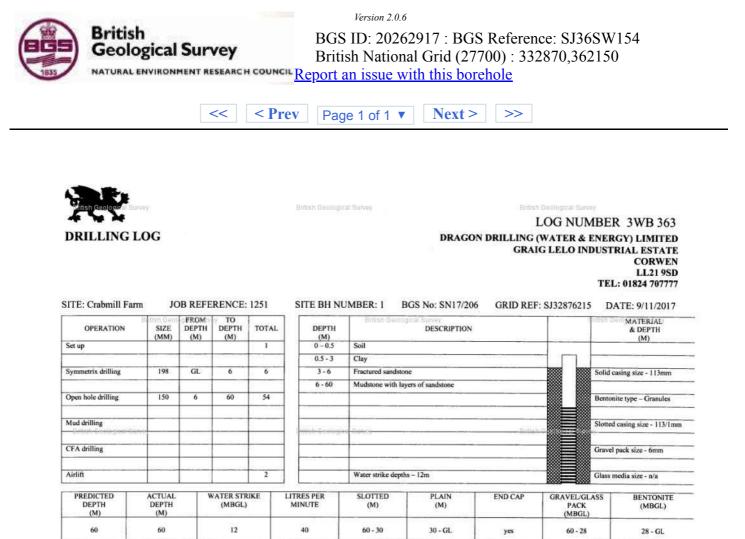
Exact site 4	Surfactor County Flint		-inch qu	larter sh	leet 14	
Level of ground sur	sogaros N. W. Thu				rough ske	
Level of ground sur		oder Hou		- or a	a tracing	fron
Level of ground sur	and the second s			-)	is very d	
Shaft Bills feed	face above sea-level (O.D.) 188 ft. If well star iameterft. Boreft. Diameter of	of bore : at top	ins.	: at bo	ttom	inal Sur
	nt lining tubes (internal diameters preferred)					
-						
Water struck at dep	oths of (feet)				•	
Rest-level of water	below top of wellfeet. Suction at	tfeet.	Yield	on	ho da	urs' ays'
gallons p	er(with pump of capacity	g.p.h.); depressing	g water	level to	L	
below top. Time	e of recoveryhrs. Amount normally	pumped daily	British Geo	p.h. for	έV	ho
	y of analysis if available)				1000	
	bert Roberts for Mr.	Communica	Date of	well	1899	
Information from						
(For Survey use only). GEOLOGICAL	NATURE OF STRATA (and any additional remarks).	m. (THICP Feet.	Inches.	Feet.	Inc
CLASSIFICATION.	icarsovey British Geological S		Feet.	thenes.		cal Sur
Glacial	Soil	0.30	1	-	1	
GISCIST	Brick soil	2.51	8	3	9	
	Light-blue metal	1.93	22	9	4 86	
	Ironstone, light-coloured		25	\$ 8	า∙ ช 58	
sh Geological Survey	Light-blue metalenned Survey		- G P	and and some	17-13	
	Black metal		6	-	64	
Lower Coal	Ironstone	0.08	~		19-63	
Measures	Black shale with ironstone		9	-		1
	Light warrant	2.24		4	24.61 80	
Entern Geolo	Blue metal	1.75 Survey	5	9	26.3786	ral Su
	Grev rock	2.10		6	41.45 41.45 41.157	
1.	Blue metal with rock bands	(8) 366	61	- 1,0 ¹ .	51.51 6	10
	Black shale		<u>12</u> 4	- -	157 51.51 (169 5215 173	1.60
	Brown warrant		±		61.85	
sh Geological Survey	British Geological Survey		British Geo	logical Surve		
					-	
		1			Harrison and	

5/16/2019

Page 3 | Borehole SJ36SW8 | Borehole Logs

Drift on L.C.M. 120Soft shale Slate rock Blate rock & grit j_4 j_6 88 20 j_4 j_2	41. (108/145 Surface c.60 0.D. Drift, L.M.S. <u>42. (108/145.</u> Kinnerton Station. Ref. Flint Mem., 192	Bore 180. Details unknown E./4). Lower Kinnerton: Davies'	180 180
Drift on L.C.M. 120 managed barrow 120 managed barrow 121 managed barrow 121 managed barrow 122 managed barrow 123 managed barrow 124 managed barrow 124 managed barrow 125 manag	124	Shale with bands of ircnstone Soft black shale Hard rock	56 80 12 92 6 98
Drift on L.C.M. 120 contograd Survey Soft shale Slate rock Sqrit 32 120 38. (108/14.5'.E./2). Higher Kinnerton: Kinnerton Lodge, Bore No. 1, 450 yds. N.W. of Lodge. Mineral bore. Ref. Flint Hem., 1924, p. 194. Surface 188 O.D. Bore 1752. (R. Roberts, Buckley; 1899). L.C.M. 164.1 Soil & brick clay 91 Soil & brick clay 92 Blue metal with ironstone 774 862 Grey rock 92 96 Blue metal with rock bands 61 157 Black shale 122 1692 Black shale 122 1692 J. (108/14.5.E./3). Higher Kinnerton: Kinnerton Lodge, Bore No. 2, 420 yds. W. of Lodge. Mineral bore. Ref. Flint Mem., 1924, p. 195. Surface 200 0.D. Bore 108. (R. Roberts, Buckley; 1899).	L.C.M. <u>40. (108/145</u> <u>County Council.</u> Surface c.100 0.D. 95-124 x 5 in. Li	Shale, rock & ironstone E./6). Kinnerton: Crab Mill.	Public supply for Flint
Drift on L.C.M. 120 Geological SurveySoft shale Slate rock3468 Slate rock38.(108/145.E./2).Higher Kinnerton: Mineral byre.2088 3238.(108/145.E./2).Higher Kinnerton: Mineral byre.Xinnerton Lodge, Bore No. 1.450yds. N.W. of Lodge.Mineral byre.Ref. Flint Hem., 1924, p.194.Surface 188 0.D.Bore 1731.Buckley; 1899).Soil & brick clay91L.C.M. 1641Soil & brick clay7718612 Blue metal with rock bands61157 Black shale	Ref. Flint Mer., 19 Buckley; 1899).	24, p.195. Surface 200 0.D. Bo	re 108. (R. Roberts,
Drift on L.C.M. 120 Geological Survey Slate rock British Geological Survey Hard rock & grit <u>34</u> 68 Slate rock Hard rock & grit <u>32</u> 120 <u>38. (108/145'.E./2). Higher Kinnerton: Kinnerton Lodge, Bore No. 1,</u> 450 yds. N.W. of Lodge. Mineral bore:	L.C.N.	Soil & brick clay Shales with ironstone Grey rock Blue metal with rock bands	$\begin{array}{c} 9\frac{1}{2} \text{ Hish Gaole } 9\frac{1}{2} \text{ Survey} \\ 77\frac{3}{4} & 86\frac{1}{2} \\ 9\frac{1}{2} & 96 \\ 61 & 157 \\ 12\frac{1}{2} & 169\frac{1}{2} \end{array}$
	400 yas. N.W. OI L	.E./2). Higher Kinnerton: Kinne	erton Lodge, Bore No. 1,
<u>17. (108/14S.E./5). Kinnerton: Warren Dale, 550 yds. W. of Creb Mill</u> . Surface c.130 0.D. Bore 120 x 5 in. Lining tubes to 101 x 5 in. R.W.L. at surface. P.W.L. 77. Yield 1,100 g.p.h. (Wyatt, 1938). Hard marl 34 34	Drift on L.C.	Hard marl	· 34 34

5/16/2019


Page 1 | Borehole SJ36SW9 | Borehole Logs

(*11982) Wt.30370/0870 10,000 9/80 . 4.4 B.W.Ltd. Gp.685 10 Name and Number of Shaft or Bore given by Geolog Su CRAB MIL water Bore at NNERTON THICKNESS GEOLOGICAL CLASSIFICATION DESCRIPTION 14SE te Hist County Council -mesers Wyatt Birs Wayland Works White fur 26/9/1937. Bote for the 30.48m. C. (00 0. D Rint 44SE 108 1-32 24k. x 4 24 Bore 29.64 Lincing tutes H. Jin 69 Rest hater Cercl pumping Eso gale Water herel 13 on heeren boyato 10/1/1942 m. 7.32 7-32 well 24 24 0 -7 62 0.30 O 0 1 -8.53 28 0 19.0 -3 0 9.45 3 31 0.91 ~ 0 0 10.67 1-22 4 0 35 0 n 11 28 0 37 2 0 0 61 12.80 42 1.52 0 5 0 13-11 0.30 1 0 43 57 0 15.54 8 O 2.44 0 17.37 1.83 6 0 O 272 -24 38 10.1 0 Fb 23 O or she 28.04 3.66 92 o O Soft Kack 12 98 29.87 1.83 0 0 Hard work .6 37.80 7.92 26 0 24 - shall 0

2019	5.95 - 9 7 - 10 1	90.20	S73	65w/16 3		1	-14	540 I		/1° .	
	SOIL SURY	VEYS L'		atory I	36 SKS	Ref:	OR	D	3271	6	315
		Hawa			1 V		Site	Ref :	.72	/149	
SIT			Sh	ell	1				43.3		0
DATI	ng Method Britsh Geolo DEPTH OF CASING BELOW G.L. (m)	WATER LEVEL MORNING & EVENING	DEPTH OF STRATA BELOW G.L.	STRA APPROX, SCALE	TA	NO. OF	TYPE OF SAMP	PENETR	ATION MPLER GARREL	NO. OF BLOWS	coRi CORI RECOV
Brash Geolog	72 Make	4		Sandy topsoil Firm brown sa bleces of bric BacKfill	k, stones etc	2	סטס	0.3 0.8 1.3		13	
	Dift Bandelor Clay (wip lines	1	1.3	Firm brown an mottled clay w Very stiff and siltysandy cla	stiff brown	15. 5 6 7	aacac	1.4 1.9 2.0 2.5 3.2		31 28	
	her of sa-	4) gcal Survey	3.4	Very stiff browith stone incluses of silt	own sandy cla	10 19 11 12	UD BX	3.5 4.0 4.4 4.75 5.1	5.05	42 Ish Geolog 20	ital Su
			4.3	sand Compact very lenses of clay pebbles	silty sand w	14		7.0	7.5	24 36	
British Geolog	cal Survey			Firm brown s numerous len medium sand	silty clay with ses of fine/	n 20 21 22	B	8.4	58.75	18 25	
	Brash Geolo		8.0	clayey shale	f sand and sto nd pieces of g antish Geological Survey wn silty sand	irey			Brit	ah Geolog	yichi Su
18,6	Samples sha	_	Disturb		bed U. Standar	d Pen. T			tor W.	Bulk	в.
British Geolog THE F	ATER DESERVED	HS W	TH OF CASING		WATER ADDED AT FOLLOWING DEPTHS TO ASSIST SORING		804	DIOLE ON	CASED / UN	+	OF CA
	overnight seepeg	8 (N.S.	- NOT SEALED)	Slow		19.8			2.4		
2.	4.2		1, 5.	Fast	DIA. OF CASING	m.m.	to de	oth of _ pth of _ oth of _			motre motre motre
RE	IARK3:	2 2 2	3 •	а а					em	ish Geolog	, ,

े British C	Institute of Geological Sciences Industrial Minerals Assessment Unit BOREHOLE RECORD SHEET S T 36 S u / 20 3283 6290	6 in. quarter i S5365 Temp. No	ω 6 12		Sutf	
Borehol	e diam. 20344.	_	Classification	Thick ness (I		thology
	NAMES AND AND ADDRESS OF A DRESS		WASTE	9.2	Ti	LL
Water s	struck British Gallog Angerin pebbly clay	Bitlish Geological Survey	BEDROCK	0.6	+ SIL	TSTONE
Remark British C	is: NGK 3283 6290 ieological Survey British: Geological Surv	ey	. Britis	th Ceological	Survey	
		British Geological Survey			Bitish Geol	ogical Survey
	od=36m					
	BROAD OAK FARM HI	AWARDEN	<u> </u>	1		
ithostrat. Code	Description			Thick ⁿ (m)	Depth to base (m)	Sample No.
British	Bindigical Survey Bindish Geological Surv Soic	ey and a second of	Brits	0.3	0.3	(9) (2) (2) (3)
Butty	CLAY, red-brown, sandy, and more clayery Britsh Geologi Filler Jabric. Yew p angulor, with much quorts and red so Between Fr and 8m	coal; so endstr. the cha	ne rounded	8.9	9:2 British Geol	HoS SI7 (3*)
	ological Survey Sandy lense tend out out of the bands. Below 8 m, renets - with water in bore	ь ни Э	Laminested	ih Geological I	Survey,	
Nonnin Helle gri	sological Survey Sandy lense tend sitty bands. Below 8 m, renett	to tru J hole.	abric	n Geological c·G+	British Geol 9.8	o-ical Survey

Page 1 | Borehole SJ36SW154 | Borehole Logs

DRILLING FOR: Domestic water supply

NAME: Malcolm MacDonald (LEAD DRILLER)

WELSH ASSEMBLY GOVERNMENT

WARREN HALL BROUGHTON

FACTUAL REPORT ON GROUND INVESTIGATION

Contract: W08/40274

Date: February 2008

Ian Farmer Associates (1998) Limited 17 Rivington Court, Hardwick Grange, Woolston, Warrington, WA1 4RT Tel: 01925 855 440 Fax: 01925 855 441

FACTUAL REPORT ON

GROUND INVESTIGATION

carried out at

WARREN BANK INTERCHANGE

BROUGHTON

Prepared for

WELSH ASSEMBLY GOVERNMENT Unit 7 Ffordd Richard Davies St Asaph Business Park St Asaph LL17 0LJ

Contract No: W08/40274

Date: February 2008

Ian Farmer Associates (1998) Limited 17 Rivington Court, Hardwick Grange, Woolston, Warrington, WA1 4RT Tel: 01925 855 440 Fax: 01925 855 441

CONTENTS

1.0	INTR	ODUCTION		2
2.0	SITE 3 2.1 2.2	SETTING Site Location Site Description		2 2 2
3.0	SITE	WORK		3
4.0	LABC 4.1 4.2	ORATORY TEST Geotechnical Te Chemical Testin	sting	4 4 4
5.0	REFE	RENCES		6
APPEN Figure Figure	A1.1	l - - -	DRAWINGS Site Location Plan Site Plan	
APPEN	NDIX 2	2 -	SITE WORK	
Figure Figure Figure Figure Figure Figure Figure	A2.2 A2.3 A2.4 A2.5 A2.6	- - - - -	General Notes on Site Work Borehole Records Window Sample Hole Records Dynamic Probe Hole Records Trial Pit Records In-Situ California Bearing Ratio Test Results SPT Summary Table Instrumentation Details	ii/i-ii/viii
APPEN	NDIX 3		LABORATORY TESTS Results of Laboratory Tests	
APPEN	NDIX 4	ł -	CHEMICAL TESTS	
		-	Results of Chemical Tests	
APPEN	NDIX 5	5 -	GAS AND GROUNDWATER MONITORING	

1.0 INTRODUCTION

- 1.1 On the instructions of Opus International Consultants (UK) Limited Consulting Engineers to Welsh Assembly Government, a supplementary ground investigation was undertaken to determine ground and groundwater conditions at the site.
- 1.2 This report has been prepared for the sole use of the Client for the purpose described and no extended duty of care to any third party is implied or offered. Third parties using any information contained within this report do so at their own risk.
- 1.3 The comments given in this report and the opinions expressed herein are based on the information received, the conditions encountered during site works, and on the results of tests made in the field and laboratory. However, there may be conditions prevailing at the site which have not been disclosed by the investigation and which have not been taken into account in the report.
- 1.4 The comments on groundwater conditions are based on observations made at the time the site work was carried out. It should be noted that groundwater levels vary owing to seasonal or other effects.

2.0 SITE SETTING

2.1 Site Location

2.1.1 The site is situated in Broughton at Leicester Lane, and may be located by National Grid Reference SJ 327,631. A site location plan is included in Appendix 1, Figures A1.1.

2.2 Site Description

- 2.2.1 The site at the time of the walkover consisted of a large area of pasture land with occasional large deciduous trees spread across the site. The land was divided into different sized fields by hedge rows.
- 2.2.2 To the W of the site on plateau B the site was reasonably flat with occasional areas of glacial depressions. The site sloped down at a considerably gradient from Plateau B to the lower laying plateau A.
- 2.2.3 The site is bound to the N by Mold Road; to the E of the site running along the full length of the site is Leicester Lane with farm land opposite. To the S of the site is a small stream with a small wooded area in the W side of the S boundary. To the W the site is bound by more agricultural land and Kinnerton Lane.

3.0 SITE WORK

- 3.1 The site work was carried out between 9th and 18th January 2008. The locations of exploratory holes were indicated by the Engineer, and the site works carried out on the basis of the practices set out in BS 10175:2001, ref. 5.1, and BS 5930:1999 ref. 5.2
- 3.2 Seventeen boreholes, designated BH01 to BH17 were sunk by light cable percussion method, Ten of the boreholes, BH04 to BH10, and BH15 to BH17 were extended by rotary coring techniques. Seventeen boreholes, designated WS01-WS17, were sunk by drive-in window sampler techniques, eighteen boreholes, designated DP01 to DP18 were sunk by dynamic probing methods and fifteen trial pits, designated TP01 to TP15 were excavated by machine, at the positions shown on the site plan, Appendix 1, Figure A1.2. The depths of boreholes and trial pits, descriptions of strata encountered and comments on groundwater conditions are given in the borehole, window sample hole, dynamic probe hole and trial records, Appendix 2, Figures A2.1 and A2.4.
- 3.3 Representative disturbed and undisturbed samples were taken at the depths shown on the borehole, window sample hole and trial pit records and despatched to the laboratory. Standard (split-barrel and cone) penetration tests, ref.5.2.were carried out in the light cable percussion boreholes in the various strata to assess the relative density or consistency. The values of penetration resistance are given in the borehole records and in greater detail in Appendix 2, Figure A2.7.
- 3.4 Samples were collected for environmental purposes in amber glass jars and kept in a cool box.
- 3.5 In-situ Californian Bearing Ratio tests and probing by TRL methods were conducted at all trial pit locations. Results of these tests are presented in Appendix 2, Figure A2.5 and A2.6.
- 3.6 Perforated standpipes, surrounded by pea shingle and protected by a stopcock cover were installed in thirteen boreholes, BH01 to BH12 and WS10, as detailed in the borehole records and also in Appendix 2, Figure A2.8.
- 3.7 The ground levels at the borehole locations were determined using traditional survey techniques and plotted on a plan supplied by the Client.
- 3.8 Gas and groundwater levels were recorded six occasions following site works. Details of this monitoring are presented in Appendix 5.

4.0 LABORATORY TESTS

4.1 Geotechnical Testing

- 4.1.1 All soil samples were prepared in accordance with BS1377: Part One: 1990 ref. 5.3 and representative sub-samples were taken for testing. The following tests were carried out: The results of the rock testing will be included within the final report.
 - 18 No. Moisture content
 - 18 No. Plasticity indices
 - 1 No. Bulk density
 - 14 No. Particle size distribution by wet sieve
 - 11 No. Particle size distribution by sedimentation
 - 21 No. pH
 - 14 No. Water soluble sulphate
 - 2 No. Groundwater sulphate
 - 3 No. Dry density/moisture content relationship
 - 7 No. Californian bearing ratio
 - 8 No. Undrained triaxial test without pore water measurement
 - 7 No. One dimensional consolidation
- 4.1.2 The results of these tests are presented in Appendix 3.

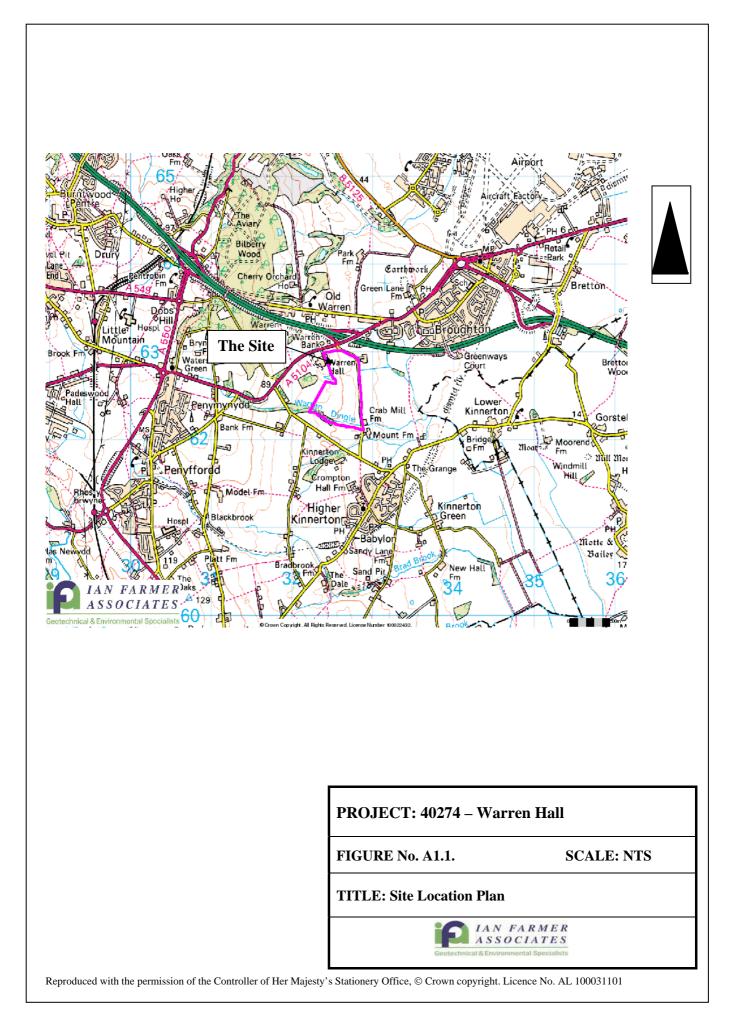
4.2 Chemical Testing

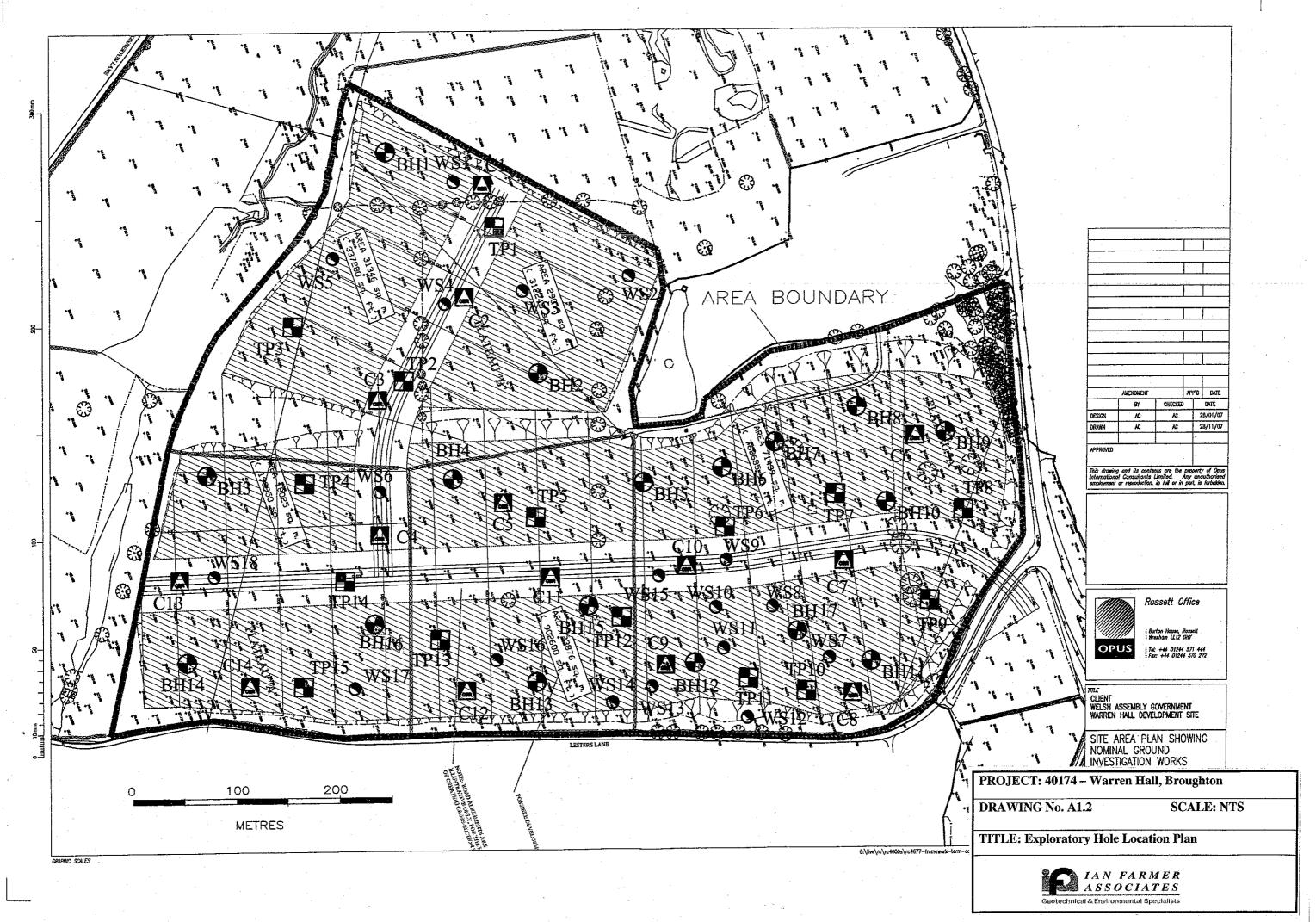
4.2.1 The suite of chemical analyses has been based upon the findings of the desk study, the conceptual model and observations on site. The chemical analyses were carried out on fifty six samples of soil, seven samples of leachate and six samples of water. The nature of the analyses is detailed below:

4.2.2 Soil Suite:

- 4.2.2.1 *Metal Suite* arsenic, boron (water soluble), cadmium, chromium, copper, lead, mercury, nickel, selenium and zinc.
- 4.2.2.2 **Volatile Organic Compounds** (VOC) including: benzene, toluene, ethylbenzene and xylenes (BTEX) and chlorinated solvents
- 4.2.2.3 **Organic Screen -** total petroleum hydrocarbons (TPH) alphatic/aromatic split, polyaromatic hydrocarbons (PAH) USEPA 16 suite, monohydric phenols
- 4.2.2.4 *Inorganics Screen* pH, sulphate (2:1 extract) and cyanide (free).

- 4.2.2.5 **PCBs** (as congeners).
- 4.2.2.6 WAC Testing.
- 4.2.3 Leachate Suite:
 - 4.2.3.1 WAC Testing.
- 4.2.4 Water Suite:
 - 4.2.4.1 *Metal Suite* arsenic, boron, cadmium, chromium, copper, lead, mercury, nickel, selenium and zinc.
 - 4.2.4.2 **Organic Screen -** total petroleum hydrocarbons (sTPH) C6-C10, C10-C14 and C15-C36 and polyaromatic hydrocarbons (PAH) – USEPA 16 suite.
 - 4.2.4.3 *Inorganics Screen* pH, sulphate, sulphur, cyanide (total) and hardness.
- 4.2.5 The results of these tests are shown in Appendix 4.


5.0 **REFERENCES**


- 5.1 British Standards Institute: BS 10175 'Code of practice for the investigation of potentially contaminated sites', BSI 2001.
- 5.2 British Standards Institute: BS 5930 'Code of practice for site investigations', BSi 1999.
- 5.3 British Standard 1377:1990, Part 9, 'Methods of Test for Soils for Civil Engineering Purposes'.
- 5.4 Building Research Establishment, Special Digest 1, "Concrete in Aggressive Ground", 3rd Edition, 2005.
- 5.5 MCERTS Performance Standard for Laboratories Undertaking Chemical Testing of Soil v2, Feb 2003. British Standards Institute: BS 10175 'Code of practice for the investigation of potentially contaminated sites', BSI 2001.

For and on behalf of Ian Farmer Associates (1998) Limited

C P Bailey BSc (Hons) MSc FGS Principal Engineering Geologist J A Latimer BSc (Hons) FGS Director **APPENDIX 1**

DRAWINGS

APPENDIX 2

SITE WORK

APPENDIX 2

GENERAL NOTES ON SITE WORKS

A2.1 SITE WORK

A2.1.1 Rotary Drilling

For exploration within rock rotary drilling methods are employed, where the drill bit is rotated on the bottom of the borehole. This method is occasionally used for drilling within soils. The drilling fluid is transferred from the surface though hollow drilling rods to the bit cooling and lubricating. Drilling fluids commonly comprise clean water, air, foam, mud or polymers which aid the transportation of drill cuttings to the surface and maximise core recovery.

There are two basic types of rotary drilling:

- Open hole where the drill bit cuts all the material within the diameter of the borehole. This technique is sometimes used in soils and weak rocks as a rapid and economical means of making holes for taking soil samples, carrying out insitu soil tests, installing instruments and probing for voids such as mine workings or solution cavities. The only samples recovered are the poor quality drill cuttings.
- Core drilling where an annular bit fixed to the bottom of the core barrel cuts a core, which is recovered within the innermost tube of the core barrel. Coring is normally carried out by triple tube core barrels. At the end of the core run the core barrel assembly is brought to the surface. The core is prevented from dropping out of the barrel by a core catcher made of spring steel. The non-rotating inner barrel contains a removable sample tube or liner. At the end of each coring run the liner is extracted from the barrel and stored in a core box, where it can be photographed, described and tested.

A2.1.2 Light Cable Percussion Boring

For routine soil exploration to depths in excess of 3m, the light cable percussion rig is generally employed for boring through soils and weak rocks. It consists of a powered winch and tripod frame, with running wheels that are permanently attached so that the rig may be towed behind a suitable vehicle. The rig is towed into position and set up using its own winching system.

The locations of services are checked to make sure the borehole is not situated unacceptably near any services. Regardless of the proximity of services, a CAT scan is undertaken at the borehole location and a trial hole dug to 1.20m by hand.

Boreholes are advanced in soil by the percussive action of the cable tool. The force of the cylindrical tool as it is dropped a short distance cuts a plug of cohesive soil that is removed by the tool.

In non-cohesive soils, the borehole is advanced by a 'shell', otherwise known as a 'bailer' or 'sand pump', which incorporates a clack valve. Material is transferred into the shell and retained by the clack valve. The water level in a borehole is maintained above that in the surrounding granular soil to allow for temporary reductions in the head of water as the shell is withdrawn from the borehole. Water should flow from the borehole into the surrounding soil at all times to prevent 'piping' and loosening the soil at the base of the hole. The casing is always advanced with the borehole in granular soil so that material is drawn from the base rather than the borehole sides.

Obstructions to boring are overcome by fitting a serrated chiselling ring to the base of the percussion tool. For large obstructions, a heavy chisel with a hardened cutting edge may have to be used.

Disturbed samples are taken in polythene bags, jars or tubs that are sealed against air or water loss.

Undisturbed samples are generally taken in cohesive materials at changes in strata and at one metre intervals to 5 metres then at 1.5 metre intervals to the full depths of the borehole. The general purpose open-tube sampler is suitable for firm to stiff clays, but is often used to retrieve disturbed samples of weak rocks, soft or hard clay and also clayey sand or silts. This has been adopted for routine use, and usually consists of a 100mm internal diameter tube (U100), which is capable of taking soil samples up to 450mm in length. The undisturbed samples are sealed at each end using micro-crystalline wax to prevent drying.

Standard penetration tests are generally carried out in non-cohesive soils but also in stiff clays and soft rocks at frequencies similar to that of undisturbed sampling.

A2.1.3 Drive-in Window Sampler

The drive-in window sampler consists of a series of cylindrical sample tubes, generally varying in diameter from 80mm to 35mm. A cutting shoe is fitted to the bottom of each tube, while a window, representing about a quarter of the circumference, is cut along the length of the tube.

The largest diameter tube is driven into the ground using a small vibrating breaker. The sample tube is extracted by means of a ratchet or hydraulic extraction system.

The borehole is extended by using progressively smaller diameter tubes.

Soil samples are extracted through the window of the tube.

A2.1.4 Dynamic Probing Heavy, DPH

This covers the determination of the resistance of in-situ soil to a 90° cone being driven dynamically, Dynamic Probing can be used to determine presence of variations in strata, however, since samples are not recovered, it should be carried out in conjunction with sampling.

In principle, the test consists of driving a 90° cone of 15cm² cross-sectional area into the ground using a 50kg drop hammer falling a standard height of 500mm. At regular intervals, in order to minimise friction on the shaft, the rods are turned.

The results are recorded as the number of blows of the hammer to drive the cone 100mm, N_{100} , together with the torque to turn the rods.

As an approximate correlation, the resistance determined by the DPH may be related to the SPT 'N' value as:

'N' value =
$$2 \times N_{100}$$

A2.2 IN-SITU TESTS

A2.2.1 Standard Penetration Test

The Standard Penetration Test is carried out in accordance with the proposals recommended by BS 1377, Part 9, 1990, ref 5.3Error! Reference source not found..

The standard penetration test, **SPT**, covers the determination of the resistance of soils to the penetration of a split barrel sampler. A 50mm diameter split barrel sampler is driven 450mm into the soil using a 65kg hammer with a 760mm drop. The penetration resistance is expressed as the number of blows required to obtain 300mm penetration below an initial seating drive of 150mm through any disturbed ground at the bottom of the borehole. The number of blows to achieve the standard penetration of 300mm is reported as the 'N' value.

The test is generally carried out in fine soils, however, it may also be carried out in coarse granular soils, weak rocks and glacial tills using the same procedure as for the SPT but with a 50mm diameter, 60° apex solid cone replacing the split spoon sampler, **CPT**.

When attempting the standard penetration test in very dense material or weathered rocks it may be necessary to terminate the test before completion to prevent damage to the equipment. In these circumstances it is important to distinguish how the blow count relates to the penetration of the sampler. This may be achieved in the following manner:

- Where the seating drive has been completed, the test drive is terminated if 50 blows are reached before the full penetration of 300mm is achieved. The penetration for 50 blows is recorded and an approximate N value obtained by linear extrapolation of the number of blows for the partial test drive.
- If the seating drive of 150mm is not achieved within the first 25 blows, the penetration after 25 blows is recorded and the test drive then commenced.
- For tests in soft rocks, the test drive should be terminated after 100 blows where the penetration of 300mm has not been achieved.

The N-value obtained from the Standard Penetration Test may be used to assess the relative density of sands and gravels as follows:

Term	SPT N-Value : Blows/300mm Penetration
Very Loose	0 - 4
Loose	4 - 10
Medium Dense	10 - 30
Dense	30 - 50
Very Dense	Over 50

A2.2.2 Dynamic Cone Penetrometer, DCP

The dynamic cone penetrometer consists of a 16mm diameter rod with a 20mm diameter, 60° cone of tempered steel at one end. The impact is provided by means of an 8kg sliding hammer falling 575mm. The total weight of the instrument is about 12kg.

The correlation of DCP to California Bearing Ratio, CBR, has been determined to be as below.

The correlation for DCP to SPT 'N' value has been determined on the basis of equivalent energy imparted per unit area of penetrometer. This provides an approximate correlation of

'N' value =
$$\frac{\text{DCP blows for 300mm}}{0.6}$$

A2.2.3 California Bearing Ratio, CBR

The California Bearing Ratio test is used to evaluate the strength of subgrade by measuring the load required to cause a plunger of standard size (50mm diameter) into the ground at a standard rate (1.00mm/min) and comparing the result with a standard material, .

The test is arbitrary in that the results cannot be accurately related to any of the fundamental properties governing soil strength. However, in that the deformation is predominantly shear, the CBR can be regarded as an indirect measurement of shear strength and modulus of subgrade reaction.

Alternative methods of determining the equivalent CBR by cone penetrometer can be undertaken. The Mexicone consists of a 30° cone of 129mm² cross-section that is pushed into the ground at a steady rate. The load is determined through a compression spring that deflects under load and is calibrated to give a direct reading of CBR on a dial. The instrument is best suited in cohesive or fine granular soil, but in gravelly soil it should not be used.

A2.3 SAMPLES

- U(x) represents undisturbed 100mm diameter sample with (x) being the number of blows required to obtain sample.
- U fail indicates undisturbed sample not recovered
- HV represents Hand Vane test with equivalent undrained shear strength
- PP represents Pocket Penetrometer test with equivalent undrained shear strength
- CBR represents California Bearing Ratio test
- B represents large bulk disturbed samples
- D represents small disturbed sample
- W represents water sample
- ∇ respresents water strike
- \checkmark represents level to which water rose

A2.4 DESCRIPTION OF SOILS

A2.4.1 General

The procedures and principles given in Section 6 of BS 5930, ref 5.3 have been used in the soil descriptions contained within this report.

A2.4.2 Predominantly Coarse Soils

A coarse soil (omitting any boulders or cobbles) contains about 65% or more coarse material and is described as a SAND or GRAVEL depending on which of the constituents predominates. The secondary constituents of coarse soils should precede the main soil

type e.g. 'Medium dense brown very gravelly coarse SAND. Gravel is subangular fine and medium of sandstone and mudstone'.

A2.4.3 Deposits containing silt-sized and clay-sized particles

Most soils are mixtures of clay and silt sized particles. Fine soil should be described as either a clay or a silt, depending on the plastic properties. If ambiguous, the term CLAY/SILT should be used.

A2.4.4 Deposits containing mixtures of fine and coarse soil.

The appropriate quantified terms should be used before the principal soil type. It is recommended that the dominant secondary fraction come immediately before the principal soil term. Additional detail can be added in a separate sentence thus, 'Gravelly very clayey SAND. Gravel (10%) is fine of rounded quartz. Clay is firm'.

The terms 'silty' and 'clayey' are mutually exclusive as in a coarse soil and based on the plastic properties of the fine fraction.

Table 1 Deposits containing boulder-size and cobble-size particles

Term	Composition
BOULDERS (or COBBLES) with a little finer material	Up to 5% finer material
BOULDERS (or COBBLES) with some finer material	5 to 20% finer material
BOULDERS (or COBBLES) with much finer material	20 to 50% finer material
FINER MATERIAL with many boulders (or cobbles)	50 to 20% boulders (or cobbles)
FINER MATERIAL with some boulders (or Cobbles)	20 to 5% boulders (or cobbles)
FINER MATERIAL with occasional boulders (or cobbles)	up to 5% boulders (or cobbles)

Term	Principal Soil Type	Approximate proportion of secondary constituent
Slightly sandy or gravelly	SAND or	Up to 5%
Sandy or gravelly	GRAVEL	5 to 20%
Very sandy or gravelly		over 20%
	SAND and GRAVEL	about equal proportions

Table 2 Mixtures of coarse and fine fractions.

Term Before	Principal Term	Proportion of secondary Coarse soil	constituent Coarse and/or fine soil
Slightly clayey or silty and/or sandy gravelly	SAND and/or		< 5
Clayey or silty and/or sandy or gravelly	GRAVEL		5 – 20 %
Very clayey or silty and/or sandy or gravelly			20 %
Very sandy or gravelly	SILT or CLAY	< 65%	
Sandy and/or gravelly Slightly sandy an/or gravelly		35 – 65 %	
		<35 %	

For clays the strength scale is used as follows:

Term	Field Identification	Undrained shear strength (KN/m ²)
Very Soft	Exudes between fingers when squeezed in hand	< 20
Soft	Moulded by light finger pressure	20 - 40
Firm	Can be moulded by strong finger pressure	40 - 75
Stiff	Cannot be moulded by finger. Can be indented by thumb.	75 - 150
Very Stiff	Can be indented by thumbnail.	150 - 300
Hard (or very weak mudstone)		> 300

A2.4.5 Man Made Soils

Man made soils (Made Ground or Fill) have been placed by man and can be divided into those composed of natural reworked soils and those composed of man-made materials. Fills are placed in the ground in a controlled manner and soils defined as Made Ground are placed without any engineering control. For example:

'MADE GROUND comprising plastic bags, window frames, garden refuse and newspapers'.

' MADE GROUND dense brown sandy GRAVEL with occasional tiles, wire and glass'.

'Firm yellow brown slightly sandy CLAY with clods (up to 200mm) of firm to stiff orange CLAY (EMBANKMENT FILL)'.

A2.4.6 Organic Soils

Small quantities of dispersed organic matter can have a marked effect on plasticity and hence the engineering properties of the soil. The following quantifying terms are appropriate:

Term	Organic Content	Typical Colour
Slightly organic clay or silt	2 - 5	Grey
Slightly organic sand	1 – 3	As mineral
Organic clay or silt	5 - 10	Dark grey
Organic sand	3 – 5	Dark grey
Very organic clay or silt	>10	Black
Very organic sand	>5	Black

A2.5 GEOLOGICAL LOGGING

A2.5.1 General

The procedures and principles given in Section 6 of BS 5930, ref 5.3. have been used in the rock descriptions contained within this report.

Open hole drilling (OH) was achieved with a tricone rock bit.

A core run is the length of rock drilled from the base of the hole each time the core barrel is run into the hole.

A2.5.2 Fracture State

Various criteria may be used for quantitative description of the Fracture State of rock cores. The standard terms are as follows.

TCR (%)	ratio of core recovered (solid and non intact) to length of core run.
SCR (%)	ratio of solid core recovered to length of core run.
RQD (%)	ratio of solid core pieces longer than 100mm to length of core run.
Fracture Index	a count of the number or spacing of fractures over an arbitrary length of core of similar intensity of fracturing. Commonly reported as either Fracture Index (FI, number of fractures per metre) or as Fracture Spacing (I_f mm).
NR	indicates no core recovery.
NI	indicates intensely fractured rock which is not of sufficient quality to allow an assessment of fracture spacing to be made.

Figure A2.1

Borehole Records

Depth (m) Sample / Tests 00-0.50 B1 20 D2 20 J3 50 J5 50 J6 50-1.00 B4	Casing Diam 150mm 1 Location Casing Deptin (m) Wat Dep (m)	o 4.00m	Dates	Level (mOD)	Client Welsh Assembly Government			umber
00-0.50 B1 20 D2 20 J3 50 D5 50 J6		er Field Records	Dates 17					40274
00-0.50 B1 20 D2 20 J3 50 D5 50 J6	Casing Wat Depth Dep (m) (m	er h Field Becords		7/01/2008	Engineer Opus International Consultants (UK) Ltd		Sh	neet 1/1
20 D2 20 J3 50 D5 50 J6			Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
20-1.65 U7 0.45 70 D8 00-2.45 SPT N=16 00-2.45 B9 50 J11 00-3.45 SPT N=22 00-3.45 D13 00-4.44 SPT 50/290 00-4.44 SPT 50/290 00-4.44 D17 00-4.44 SPT 50/290 D16 D16	1.20 DR 1.70 DR 3.00 DR 4.00 DR	Y 36 blows Y 3,3/3,4,3,6 Y 5,6/5,5,5,7			Grass over TOPSOL: Very soft, brown, sandy clay with some plant material. Firm, mottled orange brown, sandy, slightly gravelly CLAY. Gravel is subrounded to subangular, fine and medium including sandstone and siltstone. Firm, grey brown, sandy, slightly gravelly CLAY. Gravel is subrounded to subangular, fine and medium including sandstone and siltstone. Below 2.00m: brown. Below 2.00m: brown. Below 4.00m: recovered as slightly clayey, slightly sandy, angular to subangular, fine to coarse gravel. Complete at 4.50m			

	IAN FAR ASSOCIA	TES			1		Warren Hall Site - Broughton		B	umber 3H02
Boring Meth Cable Percus		-	Diamete Omm to 6		Ground	Level (mOD)	Client Welsh Assembly Government			ob umber 40274
		Locatio	n		Dates 16	6/01/2008	Engineer Opus International Consultants (UK) Ltd		SI	heet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
0.00-1.00 0.20 0.30 0.80 1.20-1.64 1.20-1.65 1.20-1.64 2.00-2.45 2.00-2.45 3.00-3.45 3.00-3.45 3.00-3.45 3.00-3.45 3.00-4.45 4.00-4.45 4.00-4.45 4.00-4.45 4.00-5.44 5.00-5.44 5.00-5.44 5.00-5.45 5.50 6.00-6.38 6.00	B1 D2 D3 J4 D5 J6 D8 B7 SPT 50/290 CPT N=18 B9 CPT N=15 B10 D11 D13 J14 SPT N=18 B15 D16 D17 SPT 50/285 D19 B18 D20 CPT 50/225 D21	1.20 2.00 3.00 4.00 4.70 6.00	1.20 WET WET DRY DRY	Water strike(1) at 1.20m, sealed at 3.50m. 7,11/12,11,12,15 5,3/4,5,4,5 2,3/4,3,4,4 4,5/5,4,5,4 7,8/11,12,13,14 7,9/14,16,20		(0.30) 0.30 (0.50) 0.80 (0.60) 1.40 (0.40) 1.80 (1.70) (1.60) (0.90) (0.90) (0.90) (0.90) (0.90)	Grass over TOPSOIL: Dark brown, clayey SAND with occasional nodules of clay and plant material. Firm, orange brown, sandy, slightly gravelly CLAY. Gravel is subrounded to subangular, fine and medium including sandstone, siltstone and coal (possible made ground). Very dense, orange brown, very clayey SAND and rounded to subrounded, fine to coarse GRAVEL with occasional nodules of clay. Gravel consists of sandstone. COBBLE/BOULDER of sandstone (driller's description). Medium dense, orange brown SAND and rounded to subrounded, fine to coarse GRAVEL. Gravel includes sandstone, siltstone and quartz. Firm, brown, sandy, slightly gravelly CLAY. Grave is rounded to subrounded, fine and medium including sandstone, siltstone and quartz. At 4.00m: occasional cobbles. Blue grey MUDSTONE, recovered as very stiff, friable, sandy, gravelly clay. At 6.00m: recovered as sandy, angular to subrounded, fine to coarse gravel. Complete at 6.00m		⊻1	
Remarks Chiselling fro 1.20m for 1.0	om 1.40m to 1.80m f 00 hour.	or 1.00 ho	ur. Chise	Illing from 4.60m to 4.	.90m for 0	.75 hours. Wa	ter added from 1.20m. Excavating from 0.00m to	Scale (approx)	Lo	ogged y
							ŀ	1:50		GP
								Figure N 4027		

P	IAN FAR ASSOCIA	MER TES					Site Warren Hall Site - Broughton		N	orehole umber 3H03
Boring Met Cable Percu		-	Diamete 0mm to 5		Ground	l Level (mOD)	Client Welsh Assembly Government		Ν	ob umber 40274
		Locatio	n		Dates	8/01/2008	Engineer Opus International Consultants (UK) Ltd		S	heet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
0.30 0.30-1.20	J1 B2					(0.30) (0.30) (0.30) (1.40)	TOPSOIL (driller's description). Firm, orange brown, occasional mottled orange, brown, grey, sandy, slightly gravelly CLAY. Grave is subrounded to subangular, fine of sandstone.	el	•	
1.20-1.65	U3 0.45	1.20	DRY	32 blows					• •	
1.70 2.00-2.45 2.00-2.45 2.00-2.45	D4 SPT N=10 D6 B5	1.70	DRY	2,2/2,3,2,3		1.70 (1.10)	Firm, red brown, sandy, gravelly CLAY. Gravel is rounded to subangular, fine and medium including sandstone, siltstone and quartz.		•	
3.00-3.45	U7 0.45	3.00	DRY	100 blows		2.80	Stiff, red brown, sandy, gravelly CLAY. Gravel is rounded to subangular, fine and medium including sandstone, siltstone and quartz.]	•	
3.50	D8					(1.70)			•	
4.00-4.45 4.00-4.45 4.00-4.45	SPT N=28 D10 B9	4.00	DRY	4,5/6,6,6,10		4.50	Below 4.00m: slightly gravelly. Blue grey MUDSTONE, recovered as stiff, friable, sandy, gravelly clay.	, <u>, , , , , , , , , , , , , , , , , , </u>	▼1	
5.00	D11					(1.50)			∇_1	
5.50-5.82	B12 CPT 50/165	5.50	4.60	Water strike(1) at 5.40m, rose to 4.60m in 20 mins. 9,14/20,22,8			Complete at 6.00m			
Remarks Chiselling fr	om 5.70m to 6.00m f	or 1.00 ho	ur. Excav	vating from 0.00m to ⁻	1.20m for	1.00 hour.	1	Scale (approx)	L' B	ogged Y
								1:50 Figure I		GP
								4027		H03

	IAN ASS (Site Warren Hall Site - Broughton	Borehole Number BH04
Boring Meth Cable percus follow on		rotary		Diamete 0mm to 4		Ground	Level (mOD)	Client Welsh Assembly Government	Job Number 40274
			Locatio	n		Dates 16	6/01/2008	Engineer Opus International Consultants (UK) Ltd	Sheet 1/2
Depth (m)	Sample	/ Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend S
0.30 0.30-1.20	J1 B2						(0.30) (0.30) (0.30) (1.10)	TOPSOIL (driller's description). Firm, dark red brown with grey veining, sandy, gravelly CLAY. Gravel is subangular to subrounded, fine and medium including slate, mudstone and coal.	
1.20-1.65 1.20-1.65 1.20-1.65	D4 SPT N= B3	- 20	1.20	DRY	3,3/3,5,6,6		1.40	Medium dense, red grey brown, slightly silty, fine SAND. Driller notes bands of sand.	
2.00-2.45 2.00-2.45 2.00-2.45	D6 SPT N= B5	⊧18	1.70	DRY	2,3/4,4,5,5				
2.70 3.00-3.45 3.00-3.45 3.00-3.45	W9 D8 SPT N= B7	⊧ 10	3.00	DRY	2,2/2,3,2,3		(0.30) 0.30 (1.10) (1.10) (1.60) (1.60) (0.80) (0.80) (0.80) (0.80) (0.70) (0.70) (0.70)	Firm, red brown CLAY with partings of silt.	
4.00-4.45 4.00-4.25 4.00-4.25	B10 D11 SPT 25 50/110	*/135	4.00	2.90	Water strike(1) at 3.80m, rose to 2.70m in 20 mins. 13,12/27,23		3.80 (0.70)	Dark blue grey SILTSTONE, recovered as very stiff, gravelly clay.	∇1
5.00	TCR	SCR	RQD	FI			4.50	Weak to very weak, dark grey, moderately weathered MUDSTONE, recovered predominately as angular to subangular, fine to coarse gravel and cobble sized fragments with sections. Discontinuities where observed are inclined approx 20 degrees. Planar, smooth, slightly	
5.00	83	28	0					stepped. Some soft clay on discontinuity surfaces.	
6.50	67	17	7	NI				Below 7.50m: becoming moderately weak.	
8.00	93	67	33	10				Moderately weak to weak, dark grey, moderately weak MUDSTONE, with some angular too subangular, medium coarse and cobble sized fragments. Discontinuities are sub-horizontal to 20 degrees inclined, planar, smooth to stepped smooth. Below 8.00m: intact mudstone.	to
9.50								Between 9.50m and 9.65m: soft clay filling. At 9.50m: some soft clay infilling.	
Remarks	om 4.10m i	to 4.50m f	or 1.00 ho	ur. Exca	vating from 0.00m to	1.20m for	1.00 hour.	Scale (appro	e Logged x) By
								1:50	MV
									e No.)274.BH04

P	IAN ASSO	FAR OCIA	MER TES					Site Warren Hall Site - Broughton		Borehole Number BH04
Machine : Flush :			Casing	Diamete 0mm to 4		Ground	Level (mOD)	Client Welsh Assembly Government		Job Number 40274
Core Dia: 9 Method : F		n Hole	Locatio	n		Dates 16	6/01/2008	Engineer Opus International Consultants (UK) Ltd		Sheet 2/2
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Kater Safet
11.00	92	42	35	9				Complete at 11.00m		
Remarks									Scale (approx) 1:50	Logged By MV
									Figure N 40274	o. 4.BH04

Boring Meth		OCIA	TES Casing			Ground	Level (mOD)	Warren Hall Site - Broughton Client Waleh Assembly Covernment	Job Numbe
Cable percus ollow on	ssion with i	otary	Location	0mm to 1 n	.30m	Dates	5/01/2008	Welsh Assembly Government Engineer Opus International Consultants (UK) Ltd	
Depth (m)	Sample	/ Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
.40 .50-1.20 .30-1.35 .30-1.35	J1 B2 D3 CPT 25		1.30	DRY	25/50		(0.50)	Grass over brown, sandy, clayey TOPSOIL (driller's description). Grey brown SANDSTONE, recovered as slightly clayey, very gravelly sand with some cobbles.	
.50	\$0/8 5	SCR 12	RQD 7	FI NI				At 1.30m: recovered as grey, slightly clayey, slightly sandy, subangular to subrounded, medium to coarse gravel. Moderately strong to strong, light grey brown, fine to medium SANDSTONE, recovered as angular to subangular, medium to coarse gravel and cobble sized fragments.	
.00	87	55	19	NI			3.00 	Light grey red brown, weak to moderately weak, sandy SILTSTONE, recovered as angular to subangular, medium to coarse gravel and cobble sized fragments with some weak to very weak intact short intervals of core. Below 3.70m: loose gravel of light grey white siltstone.	
50 75	88	70	67	NI 7			4.50 (0.25) 4.75 4.75	Moderately weak, dark grey black brown, sandy MUDSTONE, recovered as angular to subangular, medium to coarse gravel and occasional cobble sized fragments. Strong to moderately strong to moderately weathered, light grey, dark grey white, silty, fine SANDSTONE. Discontinuities are sub-horizontal axis with planar, rough surfaces coated with soft, brown black, silt and some fine gravels.	
D0 D6 50	97	75	55	10 NI			(2.01) 7.06 (0.44) 7.50	Weak to very weak, light grey brown interbedded SILTSTONE and MUDSTONE, recovered as angular to subangular, medium to coarse gravel, cobbles and occasional high weathered short intervals of core.	
								Complete at 7.50m	_
emarks hiselling fro	1	o 1.30m f	or 0.50 ho	urs. Exca	avating from 0.00m to	0 1.20m fo	└─── r 1.00 hour.	Scale (approx 1:50 Figure	GP

	IAN ASSO	FAR OCIA	TES						Site Warren Hall Site - Broughton	Borehole Number BH06
Boring Met Cable percu ollow on		rotary	-	Diamete Omm to 2		Ground Level (mOD)			Client Welsh Assembly Government	Job Number 40274
	Location			Dates 15/01/2008			Engineer Opus International Consultants (UK) Ltd	Sheet 1/1		
Depth (m)	Sample	e / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	De ((Thic	epth m) kness)	Description	Legend
0.20-1.20 0.50 1.20-1.65 1.20-1.65 1.20-1.65	B2 J1 D4 SPT N= B3	=11	1.20	DRY	Slight Seepage(1) at 0.60m. 1,1/2,3,3,3			(0.20) 0.20 (1.70)	Grass over brown TOPSOIL (driller's description). Firm, orange red, brown, sandy, slightly gravelly CLAY. Gravel is subangular to subrounded, fine and medium including sandstone and siltstone.	Z Z - - - - - - - - - - - - - - - - - -
2.20-2.24 2.20-2.24	D5 CPT 25 5028 0	*/15 SCR	2.20 RQD	DRY FI	25/50			1.90 (0.30) 2.20	Brown SANDSTONE, recovered as slightly sandy, angular to subangular, fine to coarse gravel.	
2.50	60	24	0					(0.62) 2.82	Moderately strong to strong, light brown, fine and medium SANDSTONE, recovered as short lengths of intact core with some cobble sized, angular to subangular fragments. Discontinuities are inclined at 30-40 degrees axis with black, silty on discontinuity surfaces. Moderately strong to strong, light to dark grey, very sandy SILTSTONE, recovered as angular to subangular, medium to coarse gravel and cobbles with some clay infilling.	
4.00	90	18	0					(4.38)	Below 4.00m: becoming yellow brown, highly weathered weak siltstone.	
5.50	77	19	14	NI					Below 5.50m: becoming dark yellow grey and increasing in sandy content.	
	77	43	43					7.20 (0.20) 7.40 (1.10)	Dark grey/black, weak to moderately weak MUDSTONE, recovered as gravel. Moderately strong to strong, dark grey, very sandy SILTSTONE. Discontinuities are inclined 45-40 degrees including smooth, steeply inclined fractures of 70 degrees, red brown oxide weathering on discontinuity surfaces.	
3.50								8.50	Complete at 8.50m	
Remarks Chiselling fr	om 1.90m 1	to 2.20m f	or 1.00 hc	ur. Exca	vating from 0.00m to	1.20m for	1.00 ho	our.	Scale (approx) 1:50 Figure N 4027	GP GP 4.BH06

Boring Metl			Casing	Diamete 0mm to 4		Ground	Level (mOD)	Client Welsh Assembly Government	Job Number 40274
			Locatio	n			5/01/2008- 5/01/2008	Engineer Opus International Consultants (UK) Ltd	Sheet 1/2
Depth (m)	Sample	/ Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
0.25-1.20 0.50 1.20-1.65 1.20-1.65 1.20-1.65 2.00-2.45	B1 J2 D4 SPT N= B3 U5 0.45		1.20	DRY DRY	1,1/2,2,3,3 70 blows			Grass over clayey TOPSOIL (driller's description). Firm, orange brown, sandy, slightly gravelly CLAY with occasional pockets of grey, clayey sand and some rootlets. Gravel is subrounded to subangular, fine and medium of sandstone.	
2.50 3.00-3.45 3.00-3.45 3.00-3.45 3.50 4.00-4.04 4.00-4.04	D6 D8 SPT N= B7 D9 D10 CPT 25 50/20		3.00	DRY 3.00	1,2/3,4,5,10 Water strike(1) at 3.40m, rose to 2.00m in 20 mins. 25/50		(0.90) 3.40 (0.60)	Stiff, red brown, sandy, slightly gravelly CLAY. Gravel is subangular to subrounded, fine and medium including siltstone, sandstone and coal. Red brown SANDSTONE, recovered as sandy, subangular to subrounded, fine to coarse gravel. Yellow brown black and grey, moderately weak to moderately strong, fine, silty SANDSTONE, recovered as	
5.00 5.40-5.55	TCR	SCR	RQD	FI	C11		(1.45)	non intact, angular to subangular, gravel and cobbles sized fragments and occasional sections of intact core.	
5.50	40	20	17					Moderately weak to very weak, highly weathered, dark black grey MUDSTONE, recovered as predominately bands of clay with angular to subangular, fine to coarse gravel and cobble sized fragments with occasional relic laminated structures (at 6.50-6.70m). Discontinuities where observed are sub-horizontal.	
3.00	73	0	0	NI					
	57	0	0						
9.50 Bemarks									
Remarks Chiselling fro	om 3.60m 1	to 4.00m f	or 1.00 ho	ur. Excav	vating from 0.00m to	1.20m for	1.00 hour.	Scale (approx 1:50 Figure	GP

p	IAN ASS (FAR OCIA	MER TES					Site Warren Hall Site - Broughton		Borehole Number BH07
Machine : Flush :			Casing	Diamete Omm to 4		Ground	Level (mOD)	Client Welsh Assembly Government		Job Number 40274
Core Dia: 92 Method : Ro		n Hole	Locatio	n		Dates 15 16	5/01/2008- 5/01/2008	Engineer Opus International Consultants (UK) Ltd		Sheet 2/2
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Kater Sater
10.14-10.19 10.57-10.66 11.00	89	0	0		C12 C13			Complete at 11.00m		
Remarks			<u> </u>				<u>È</u>		Scale (approx) 1:50 Figure N 40274	GP 6. 4.BH07

	IAN ASS(Warren Hall Site - Broughton	Number BH08
Boring Meth Cable percus follow on		rotary	-	Diamete Omm to 4		Ground	Level (mOD)	Client Welsh Assembly Government	Job Number 40274
			Location	n		Dates	5/01/2008	Engineer Opus International Consultants (UK) Ltd	Sheet 1/2
Depth (m)	Sample	/ Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
0.00-1.00 0.20	B1 D2						(0.30)	Grass over TOPSOIL: Brown, very clayey, slightly gravelly SAND with some plant material. Gravel is subrounded, fine including guartz and sandstone.	
0.30 0.30	D3 J4						(1.30)	Firm, orange brown, sandy, slightly gravelly CLAY. Gravel is subangular, fine to coarse of siltstone.	
1.20-1.65 1.20-1.65 1.20-1.65	B5 SPT N= D6	16	1.20	DRY	1,2/3,4,4,5		1.60		
2.00-2.45 1.70 1.70 2.00-2.45 2.00-2.45	D10 J7 D8 SPT N= B9	13	1.70	DRY	2,2/3,4,3,3		1.60 (0.40) 2.00 (0.95) 2.95 (0.75) 3.70 (0.75) 4.45	Orange brown, silty, fine and medium SAND. Firm, orange brown, sandy, slightly gravelly CLAY with occasional pockets of sand. Gravel is subangular to subrounded, fine to coarse including sandstone and siltstone.	
2.60 2.60 3.00-3.45 2.95 3.00-3.45 3.00-3.45	D11 J12 B14 D13 SPT N= D15	46	3.00	WET	3,8/9,11,14,12		2.95	Dense, red brown, slightly silty, slightly gravelly, fine and medium SAND. Gravel is subangular to subrounded, fine to coarse including sandstone and quartz.	
3.70 4.00-4.39 4.00-4.39	D16 D17 SPT 50	/240	4.00	DRY	8,9/11,13,19,7		(0.75)	Dark blue grey MUDSTONE, recovered as very clayey sand and angular to subangular, fine and medium gravel. Below 4.00m: recovered as very stiff, friable, sandy, gravelly clay.	
								Weak to very weak, dark grey green, highly weathered SILTSTONE, recovered as angular to sub-angular, fine to coarse gravel and cobble sized fragments with some sections of intact core. Discontinuities where observed are sub-horizontal to core arises, planar and smooth.	
	TCR	SCR	RQD	FI					X X X X X X X X X X X X X X X X X X X
6.00	80	25	24	NI					
7.00				4					× × × × × × × × × × × × × × × ×
7.50	59	50	41	7			(7.55)	Below 7.50m: very weak to weak, dark grey green siltstone.	X X X X X X X X X X X X X X X X X X X
9.00	33	3	0	NI					
Remarks Water addec	d from 3.00	m. Excav	ating from	0.00m to	0 1.20m for 1.00 hou	r.	<u>. </u>	Scale (approx)	Logged By
								1:50	GP
								Figure	No.

	IAN ASSO	FAR DCIA	TES					Site Warren Hall Site - Broughton		Borehol Number BH08
Machine : Flush :				Diamete Omm to 4		Ground	Level (mOD)	Client Welsh Assembly Government		Job Number 40274
Core Dia: 92 Method : Re		I Hole	Locatio	n		Dates 15	5/01/2008	Engineer Opus International Consultants (UK) Ltd		Sheet 2/2
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend
0.50	65	34	11	NI						
12.00								Complete at 12.00m		
Remarks							<u> </u>	1	Scale (approx)	Logged By
									1:50	GP
									Figure N	lo. 4.BH08

p	IAN ASSO	FAR OCIA	MER TES					Site Warren Hall Site - Broughton	Boreho Numbe BH0	er
Boring Met Cable percu follow on		rotary		Diamete 0mm to 3		Ground	Level (mOD)	Client Welsh Assembly Government	Job Numbe 4027	
			Locatio	n		Dates 16	6/01/2008	Engineer Opus International Consultants (UK) Ltd	Sheet 1/1	
Depth (m)	Sample	/ Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water
							(0.20)	Grass over brown clayey TOPSOIL (driller's description).		
0.20-1.20 0.50	B2 J1							Soft, red brown, sandy, slightly gravelly CLAY. Gravel is subrounded to subangular, fine and medium of sandstone and siltstone.		
1.20-1.65 1.20-1.65 1.20-1.65	D4 SPT N= B3	-9	1.20	DRY	1,1/2,2,2,3		(3.00)	Below 1.20m: firm.		•
2.00-2.45	U5 0.45	5	2.00	DRY	70 blows					•
2.50 3.00-3.22 3.00-3.22 3.00-3.45	D6 B7 SPT 50, D8	/65	3.00	DRY	2,4/50		E ano	Below 2.50m: stiff.		
3.50-3.54 3.50-3.54	D9 CPT 25	*/15	3.00	DRY	25/50		(0.30)	Red brown SANDSTONE, recovered as sandy, subangular to angular, fine to coarse gravel.		
4.00	50/20 TCR	SCR	RQD	FI	-			Moderately strong, red brown, fine to medium SANDSTONE, recovered as angular to subangular, medium to coarse gravel and cobble sized fragments with silt coatings on discontinuity surfaces.		
	60	21	16							
	60	21	10					Moderately strong, red brown, fine to coarse SANDSTONE, recovered as angular to subangular, medium to coarse gravel and cobble sized fragments with clay coatings of discontinuity surfaces.		
7.00				NI			(1.75)			
	68	34	19					Moderately weak to weak, red brown, highly weathered SILTSTONE, recovered predominately as angular to subangular, medium to coarse gravel and cobbles.		
8.50	69	21	7							
Remarks	om 3 20m t	to 3.50m f	or 1 00 bc	ur. Exca	vating from 0.00m to	1.20m for	<u> </u>	Scale	Logge	d
Sugenity II	0.2011	0.00000	Ci 1.00 IIC	LAUd				(approx)	GP	
								1:50 Figure		
								402	74.BH09	

Boring Meth	ASSO		Casing	Diamete	r	Ground	Level	(mOD)	Client		Jo	
Cable percus		rotary)mm to 4			Leven	(1102)	Welsh Assembly Government		Νι	umber 40274
			Locatio	ı		Dates	4/01/20	08-	Engineer		Sh	neet
							5/01/20		Opus International Consultants (UK) Ltd	-1		1/2
Depth (m)	Sample	/ Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	De (I (Thicl	epth m) kness)	Description	Legend	Water	Instr
0.00-0.50	B1							(0.10) 0.10	Gravel over MADE GROUND: Topsoil (driller's description).		4	
0.20 0.20 0.50-1.00 0.60 0.60	D2 J3 B4 D5 J6				Water strike(1) at 0.60m, rose to 0.50m in 20 mins, sealed at 0.65m.			(1.90)	MADE GROUND: Soft, orange red brown, sandy, gravelly CLAY with some cobbles of sandstone and some rootlets. Gravel is subangular to subrounded, fine to coarse including sandstone, mudstone and coal.		∑ 1	
1.20-1.65	U7 0.45	5	1.20	0.65	28 blows							
1.70 2.00 2.00-2.45 2.00-2.45 2.00-2.45	D8 J11 SPT N= D10 B9	-16	1.70	WET	3,3/3,3,5,5			2.00	Firm in places stiff, red brown, sandy, gravelly CLAY. Gravel is subangular to subrounded, fine to coarse including mudstone and sandstone.			
2.60 3.00-3.45	D12 U13 0.4	5	3.00	DRY	48 blows			(2.00)			▼ 2	
3.50 3.50	D14 J15				Water strike(2) at 3.50m, rose to 3.00m in 20 mins.					· · · · · · · · · · · · · · · · · · ·	1√2	
4.00-4.24 4.00-4.24	D16 SPT 25 50/95 TCR	*/145	4.00 RQD	WET	8,17/38,12			4.00 (0.45)	Grey SILTSTONE, recovered as angular to subangular, fine to coarse gravel.	******		
4.50				9			F	4.45	Very weak to moderately weak, red grey to light blue grey, highly weathered SILTSTONE, recovered predominately as intact sections of core with occasional intervals of angular to subangular fragments of siltstone. Discontinuities are inclined sub-horizontal with surfaces with red brown and black weathering. Recovered discontinuities inclined at 30-40 degrees and 11 degrees.			<u></u>
5.50	97	75	58	9				(3.05)				
6.50 6.90			-	NI						X X X X X X X X X X X X X X X X X X X		
7.50				3				7.50	Moderately strong to strong, grey blue, silty SANDSTONE. Discontinuities are sub-horizontal			
				8					and 30-40 degrees. Below 8.00m: red brown, fine sandstone.			
8.50		70		3				(3.00)				
9.00 9.50	92	76	57	NI								
Remarks Excavating f	rom 0.00m	1 to 1.20m	for 1.00 h	our.	1	1				Scale (approx)	Lo By	ogged /
										1:50		ΜV

	IAN ASS(FAR OCIA	TES			1		Site Warren Hall Site - Broughton		Β	orehole umber 8H10
Machine : Flush :				Diamete 0mm to 4		Ground	Level (mOD)	Client Welsh Assembly Government			ob umber 40274
Core Dia: 9	2		Locatio	n		Dates		Engineer			neet
Method : R	otary Oper	n Hole	Locatio			14	/01/2008- 5/01/2008	Opus International Consultants (UK) Ltd			2/2
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
				7			(3.00)				
0.50								Complete at 10.50m			
Remarks									Scale (approx)	Lc B\	ogged
									1:50		, MV
									Figure N		
									4027		110

	IAN FAR ASSOCIA						Site Warren Hall Site - Broughton		Nu	orehole umber 8H11
Boring Meth Cable Percus		-	Diamete 0mm to 1		Ground	Level (mOD)	Client Welsh Assembly Government			ob umber 40274
		Locatio	'n			4/01/2008- 5/01/2008	Engineer Opus International Consultants (UK) Ltd		Sł	1/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
0.40 0.40-1.20	J1 B2					(0.40) 0.40	TOPSOIL (driller's description). Firm, orange red brown, slightly sandy, gravelly CLAY with some pockets of fine sand. Gravel is subangular to subrounded, fine to medium			
1.20-1.65	U3 0.45	1.20	DRY	78 blows			including sandstone and coal. Occasional rootlet	5.		
1.70 2.00-2.45 2.00-2.45 2.00-2.45	D4 SPT N=33 B5 D6	1.70	DRY	3,4/6,7,9,11			Below 2.00m: stiff.			
3.00-3.45	U7 0.45	3.00	DRY	107 blows		2.90	Stiff, dark red brown, sandy, gravelly CLAY with occasional cobbles of sandstone. Gravel is subangular to subrounded, fine and medium including sandstone and mudstone.			
3.50 4.00-4.45 4.00-4.45 4.00-4.45	D8 SPT N=39 B9 D10	4.00	DRY	5,6/8,10,10,11		(1.50)				
5.00	D11						Medium dense, brown, silty, slightly gravelly SAND. Gravel is subangular to subrounded, fine to coarse including sandstone and mudstone.			
5.50-5.95 5.50-5.95 5.50-5.95	SPT N=17 B12 D13	5.50	MOIST	3,4/4,4,5,4					<u>n o o - lino e o o no o - lino e</u>	2. 1902 - 100 - 10
6.50	D14							× ~ ~ ~ ~	00 R 0 0 - UR0 4 00	
7.00-7.45 7.00-7.45 7.00-7.45	SPT N=9 D16 B15	7.00	MOIST	2,1/2,2,2,3		(5.40)				
8.00	D17									
8.50-8.95 8.50-8.95 8.50-8.95	SPT N=11 B18 D19	8.50	MOIST	1,2/2,2,3,4						
9.50 9.80	D20 D21					9.80	Stiff, dark grey brown, sandy, gravelly CLAY.			
Remarks Excavating fr	om 0.00m to 1.20m	for 1.00 h	nour.				·	Scale (approx)	Lc By	ogged V
								1:50 Figure N 4027	lo.	MV

P	IAN FAR ASSOCIA	MER TES					Site Warren Hall Site - Broughton		Νι	orehole umber 3 H11
Boring Meth Cable Percus		Casing 150	Diamete Omm to 1		Ground	Level (mOD)	Client Welsh Assembly Government			b umber 40274
		Locatio	n			4/01/2008- 5/01/2008	Engineer Opus International Consultants (UK) Ltd		Sh	2/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
10.00-10.45	U22 0.45	10.00	DRY	75 blows			Gravel is subangular to subrounded, fine to coarse of sandstone and mudstone.	······································		
10.50	D23									
11.00	D24									
11.50-11.95 11.50-11.95 11.50-11.95	SPT N=19 D26 B25	11.50	DRY	3,4/4,5,5,5		(4.00) (4.00) (4.00) (4.00) (0.40) (0.40) (0.40) (0.30) (0.30) (14.50)	Below 11.50m: some partings of silt.			
12.50	D27									
13.00-13.45	U28 0.45	13.00	DRY	97 blows						
13.50	D29							······································		
13.80	D30					13.80	Stiff, dark grey black, gravelly CLAY. Gravel is	* <u>* * * * *</u> *		
14.00-14.16 14.00-14.45	CPT 25*/120 50/40 B31	13.70	DRY	9,16/50		(0.40) 14.20 (0.30) 14.50	Stiff, dark grey black, gravelly CLAY. Gravel is subangular to angular, medium to coarse of mudstone (possible weathered mudstone). Dark grey black MUDSTONE, recovered as angular to subangular, medium to coarse gravel.			
							Complete at 14.50m			
Remarks								Scale	Lo	aaed
Chiselling fro	m 14.20m to 14.50r	n tor 1.00	nour.					Scale (approx)		ogged /
							-	1:50 Figure N		MV
								4027		111

	IAN FAR ASSOCIA				1		Site Warren Hall Site - Broughton		N	orehole umber 3H12
Boring Meth Cable Percu		Casing 1	Diamete Omm to 7		Ground	Level (mOD)	Client Welsh Assembly Government		N	ob umber 40274
		Location	ו		Dates 14	4/01/2008	Engineer Opus International Consultants (UK) Ltd		SI	heet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
0.10-1.20	B2					(0.10) 0.10	Grass over MADE GROUND: topsoil (driller's description).			
0.50	J1						MADE GROUND: Firm, dark red brown, sandy, gravelly CLAY with some pockets of red brown sand. Gravel is subangular to subrounded, fine and medium of sandstone, mudstone and brick fragments. Occasional rootlets.			
1.20-1.65 1.20-1.65 1.20-1.65	SPT N=7 B3 D4	1.20	DRY	1,1/1,2,2,2						
2.00-2.45	U5 0.35	1.50	DRY	55 blows						
2.50	D6					(5.00)				
3.00-3.45 3.00-3.45 3.00-3.45	SPT N=8 D8 B7	3.00	DRY	1,1/1,2,2,3			Below 3.00m: occasional cobbles of sandstone.			
4.00-4.45	U9 0.35	4.00	DRY	70 blows						
4.50	D10									
5.00-5.45 5.00-5.45 5.00-5.45	SPT N=11 B11 D12	4.50	DRY	1,2/2,3,3,3		5.10	Firm, dark grey brown, slightly gravelly CLAY with pockets of laminated light grey silt. Gravel	· · · ·		
5.50 5.60	D13 D14					5.60	includes mudstone. Dark blue grey, thinly laminated MUDSTONE, recovered as clayey, angular to subangular, fine to			
6.00-6.45	U15 0.45	6.00	DRY	90 blows			coarse gravel.			
6.50	D16			Slight seepage(1) at 6.50m.		(1.90)			∇ 1	
7.50-7.57 7.50-7.57	CPT 25*/30 50/35 D17	7.50	DRY	25/50			Complete at 7.50m			
Remarks Chiselling fro	1 om 7.20m to 7.50m f	or 1.00 ho	ur. Excav	vating from 0.00m to	1.20m for	1.00 hour.		Scale (approx)	Lo B	ogged Y
								1:50		MV
								Figure N 4027		412

Cable Percussion 150mm to 4.00m Welsh Assembly Government 402 Location Dates 16/01/2008 Engineer Opus International Consultants (UK) Ltd Sheet 1/1 Depth Casing Water Level Depth Image: Casing Consultants (UK) Ltd Image: Casing Consul	ISOmm to 4.00m Weight Assembly Government Mutual Consultants (UK) Ltd Number 422 0r8/h Sample / Tests Setting Mathematical Consultants (UK) Ltd 11 0r8/h Sample / Tests Setting Mathematical Consultants (UK) Ltd 11 0r8/h Sample / Tests Setting Mathematical Consultants (UK) Ltd 11 0 120 Ji Ji <th></th> <th>IAN FAR ASSOCIA</th> <th>TES</th> <th>Diamat</th> <th>_</th> <th>0</th> <th></th> <th>Warren Hall Site - Broughton</th> <th></th> <th>B</th> <th>umber 8H13</th>		IAN FAR ASSOCIA	TES	Diamat	_	0		Warren Hall Site - Broughton		B	umber 8H13
Image: Note of the second se	Terms Concentrational Consultants (UK) Ld Total consul	•					Ground	Level (mOD)			Ň	umber 40274
2.40 1.46-1.20 1/1 1/2	49 120 131 132 132 132 133			Location	n		Dates 16	6/01/2008			SI	h eet 1/1
2.40 3.40-1.20 J1 B2 120 DRY 81 blows (0.40) (0.80) (1.30) (1.30) (1.30) (1.30) (1.30) (1.30) (1.30) (1.30) (1.30) (1.20) (3.30) (1.20) (3.30) (1.20) (1.20) (1.20) (1.20)	40 1.20 11 120 121 123.16 121 123.16 120 121 123.16 121 123.16 121 123.16 121 123.16 121 123.16 121 123.16 121 123.16 121 123.16 121 123.16 121 123.16 121 123.16 1	Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
	hiselling from 4.10m to 4.50m for 1.00 hour. Excavating from 0.00m to 1.20m for 1.00 hour.	0.40-1.20 1.20-1.65 1.70 2.00-2.45 2.00-2.45 2.00-2.45 3.00-3.32 3.00-3.32 3.00-3.32 3.00-3.45	B2 U3 0.45 D4 SPT N=24 D6 B5 SPT 56/165 D8 B7 CPT 25*/85 50/100	1.20 1.70 3.00	DRY DRY DRY	4,5/5,6,6,7 6,12/17,23,16			Firm, orange brown, sandy, slightly gravelly CLAY with occasional grey and black horizons. Gravel is subangular to subrounded, fine and medium including sandstone and siltstone (possible made ground). Dark blue grey MUDSTONE with occasional nodules of clay, recovered as clayey, slightly sandy, angular to subangular, fine and medium gravel. Dark blue grey MUDSTONE, recovered as stiff, friable, sandy, slightly gravelly CLAY. Gravel is angular to subangular, fine and medium. Dark blue grey MUDSTONE, recovered as slightly clayey, slightly sandy, angular to subangular, fine to coarse gravel.	3		
	Figure No.											GP

	OCIATES			1		Warren Hall Site - Broughton		В	umber 8H14
Boring Method Cable Percussion	-	Diamete Omm to 3		Ground	Level (mOD)	Client Welsh Assembly Government			ob umber 40274
	Locatio	n		Dates 18	3/01/2008	Engineer Opus International Consultants (UK) Ltd			heet 1/1
Depth (m) Sample	/ Tests Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
0.20-1.20 B2 0.50 J1 1.20-1.65 D4 1.20-1.65 D4 2.00-2.45 U5 0.45 2.50 D6 3.00-3.05 CPT 25 50/20 D7	1.50	DRY DRY	1,2/2,2,3,3 110 blows Water strike(1) at 2.50m, rose to 2.25m in 20 mins, sealed at 2.70m. 25/50			Grass over brown, clayey TOPSOIL (driller's description). Firm, red brown, mottled orange brown, grey, sandy, slightly gravelly CLAY with some rootlets. Gravel is subrounded to subangular, fine and medium including sandstone and siltstone.			
Remarks Chiselling from 2.70m t	o 3.00m for 1.00 ho	our. Excav	vating from 0.00m to	1.20m for	1.00 hour.	1	Scale (approx)	Lo By	ogged y
								1	

and the second se	IAN ASSO					1		Site Warren Hall Site - Broughton		N	orehole umber 3H15
Boring Meth Cable percus follow on		rotary	Casing 150	Diamete Omm to 4		Ground	Level (mOD)	Client Welsh Assembly Government		Ň	ob umber 40274
			Locatio	n		Dates	7/01/2008	Engineer Opus International Consultants (UK) Ltd		S	heet 1/1
Depth (m)	Sample	/ Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
0.40 0.40-1.20 1.20-1.65 1.70 2.00-2.45 2.00-2.45 2.00-2.45	J2 B1 U3 0.45 D4 D6 SPT N= B5		1.20	DRY	75 blows 2,4/4,7,10,11		(0.40) (0.40) (1.70) (1.70) (1.70)	TOPSOIL (driller's description). Firm, orange brown, sandy, slightly gravelly CLAY Gravel is angular to subrounded, fine and mediur including sandstone and siltstone. Between 0.40m and 1.20m: very sandy. Blue grey MUDSTONE, recovered as very stiff,			
3.00-3.45 2.60 3.00-3.45 3.00-3.45	W7 TCR	SCR	RQD	FI	B8 7,10/12,12,12,14 SPT N=50 D9		(0.90)	friable, sandy, gravelly clay. Gravel is angular to subrounded, fine to coarse.		▼ 1	
3.00 4.00-4.45 4.00-4.37	40	12	0	NI	D9 Water strike(1) at 3.30m, rose to 2.60m in 20 mins. 11,13/15,17,18 CPT 50/220 B10		(1.10) 4.10 (0.40) 4.50	Blue grey brown MUDSTONE, recovered as clayey sand and angular to subrounded, fine and medium gravel. Grey MUDSTONE, recovered as very stiff, slightly sandy, gravelly clay. Gravel is angular to subangular, fine and medium. Moderately weak to weak, dark blue grey black		⊻1	
4.75 5.87	50	37	36	7			(0.50)	MUDSTONE, recovered as angular to subangular medium to coarse gravel and occasional cobbles. At 5.00m: pocket of soft, black clay. Moderately weak to weak, light grey MUDSTONE Discontinuities are sub-horizontal, planar, smooth with soft clay and black staining on surfaces.	,		
6.22 6.50	89	69	42	9			6.22	Weak to moderately weak, light grey SILTSTONE recovered as angular, medium to coarse fragments with intervals of intact core where observed discontinuities are sub-horizontal, plana and rough.	******		
7.50	82	53	34	9				Below 7.50m: becoming dark grey green.			
8.50 9.50	78	30	10	NI			8.85 (0.65)	Below 8.85m: becoming dark grey brown. Dark grey brown, weak to moderately weak SILTSTONE, recovered as angular to subangular medium to coarse gravel and cobbles with occasional short intervals of intact core. Discontinuity appear sub-horizontal.			
Remarks Chiselling fro	om 4.10m t	o 4.50m f	or 1.00 ho	ur. Excav	vating from 0.00m to	1.20m for	1.00 hour.	1	Scale (approx)	L	ogged y
									1:50		GP
									Figure N 4027		H15

		OCIA		D '		a	1	DD) Client			BH16
ng Meth e percus w on	i od ssion with i	rotary		Diamete 0mm to 1		Ground	Level (mOD)	Client Welsh Assembly Government		N	ob umbe 40274
			Locatio	n		Dates 17	7/01/2008	Engineer Opus International Consultants (UK) Ltd		S	heet 1/1
epth (m)	Sample	/ Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Inst
							(0.40)	TOPSOIL (driller's description).			<u> </u>
1.10	J2 B1						0.40	Firm, mottled orange brown grey, sandy, slightly gravelly CLAY with some rootlets. Gravel is subangular to subrounded, fine to coarse sandstone and siltstone.			
.65	U3 0.27		1.20	DRY	83 blows		(1.50)				
.21 .21 .45	D4 D6 SPT 50/ B5	55	1.70	DRY	7,12/50		1.90 (0.40) 2.30	Orange grey SILTSTONE, recovered as stiff, sandy, gravelly clay. Gravel is angular to subangular, fine to coarse.			
	TCR	SCR	RQD	FI			(0.20) 2.50 (0.30)	Grey SILTSTONE, recovered as sandy, angular to subangular, fine to coarse gravel.			
·	54	0.43	20	8			(1.50) (1.50) (0.40) (0.40) (0.20) (0.20) (0.30) (0.30) (0.30) (0.30) (0.20) (0.30) (0.20) (0.20) (0.20) (0.20) (0.41) (0.42) (0.41) (0.42)	Weak to very weak, red yellow brown, mottled grey blue SILTSTONE, recovered as subangular to subrounded, medium to coarse gravels and limited intervals of very weak, highly weathered core. Discontinuities are sub-horizontal core arises with heavy, brown staining on surfaces, brown hydrated oxides of FC.			
	75	75	56	8			(3.20)	Moderately weak to weak, yellow orange brown, sandy SILTSTONE, recovered as intervals of intact core, discontinuities are sub-horizontal to core arises, underlying rough with strong weathered stains from re oxides on discontinuity surfaces.	☐		
	92	74	55	8				Below 4.60m: light grey blue with staining. Below 2.80m: becoming more sandy.			
	100	49	13	NI			6.00	Moderately strong, moderately weathered			
-	50	0	0	NI			(0.40) 6.40	BRECCIA. Weak, black COAL interlaminated with			
	100 67	0 67	0 0 67				(0.40) 6.80	MUDSTONE. Moderately strong, moderately weathered	*****		
	70	36	36				(0.65)	BRECCIA.			
	70	23	10	NI			(1.15)	Weak to very weak, light grey brown SILTSTONE, recovered as angular to subangular, medium to coarse and occasional intervals of highly weathered core.			
							6.00 (0.40) (0.40) (0.40) (0.65) (0.65) (1.15) (1.15)	Complete at 8.60m	× × × × × × × × × × × × × × × × × × ×		
arks	um 2 30m t	0 2 50m fr	or 1.00 bc		vating from 0.00m to	1 20m for	1 00 bour		Scale	Ŀ	ogg
y 110	2.00111 [(approx)		y GP
									Figure N	L	

P	IAN FAR ASSOCIA	MER TES					Site Warren Hall Site - Broughton		Νι	orehole Imber H17
Boring Meth Cable percus follow on	nod ssion with rotary	-	Diamete 0mm to 1		Ground	Level (mOD	Client Welsh Assembly Government			b Imber 10274
		Locatio	'n			6/01/2008- 7/01/2008	Engineer Opus International Consultants (UK) Ltd		Sh	1/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness	Description	Legend	Water	Instr
0.20 0.40-1.20 0.50	D1 B3 J2					(0.40) (0.40) (0.40)	Grass over TOPSOIL: Brown, clayey, slightly gravelly SAND with occasional plant material. Gravel is subrounded, fine and medium of sandstone.		~ 777777	
							Firm, orange brown, occasional mottled orange brown and grey, sandy CLAY with occasional plar material.	t		
1.20-1.65 1.20-1.65 1.20-1.65	SPT N=9 B4 D5	1.20	DRY	1,1/2,2,2,3			Below 1.20m: occasional pockets of very clayey, slightly gravelly sand. Gravel is subangular to subrounded, fine and medium of sandstone.			
2.00-2.45 2.00 2.00-2.45 2.00-2.45	SPT N=7 D6 B7 D8	2.00	MOIST	1,1/1,2,2,2 Water strike(1) at		2.00	Loose, brown, silty, slightly gravelly SAND. Grave is subangular to subrounded, fine to coarse including siltstone and sandstone.		▼ 1 ∇ 1	
2.00 2.40	50			2.40m, rose to 2.10m in 20 mins, sealed at 8.50m.			At 2.50m: occasional pockets of very soft, sandy clay.		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
3.00-3.45 3.00-3.45 3.00-3.45	SPT N=9 B9 D10	3.00	2.40	1,1/2,2,2,3			At 3.00m: slightly silty, fine to coarse sand.		0,	
4.00-4.45 4.00-4.45 4.00-4.45	SPT N=10 B11 D12	4.00	3.00	1,1/2,2,3,3					0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
5.00-5.45 5.00-5.45 5.00-5.45	SPT N=8 D14 B13	5.00	3.50	1,1/2,2,2,2		(5.80)				
6.00-6.45 6.00-6.45 6.00-6.45	SPT N=7 D16 B15	6.00	3.50	1,1/2,1,2,2					0.0 4040 800 400 4040 800	94.5 \$5.25 \$3.07 4.5 \$2.00 \$3.00 \$
7.50-7.95 7.50-7.95 7.50-7.95	SPT N=17 B17 D18	7.50	4.00	1,3/3,4,5,5						
8.00	D19						Stiff, brown, sandy, slightly gravelly CLAY. Grave is subrounded to subangular, fine and medium including sandstone and siltstone.			
9.00-9.45	U20 0.45	9.00	DRY	75 blows						
9.50	D21					(3.40)				
Remarks Excavating fr	rom 0.00m to 1.20m	for 1.00 h	l 10ur.			<u> </u>		Scale (approx)	Lo	gged
-								1:50	_	GP
								Figure N 4027		17

	IAN ASS (Site Warren Hall Site - Broughton		Ν	orehole umber 3H17
Boring Meth Cable percus follow on		rotary	-	Diamete Omm to 1		Ground	Level (mOD)	Client Welsh Assembly Government		Ň	ob umber 40274
			Locatio	'n			6/01/2008- 7/01/2008	Engineer Opus International Consultants (UK) Ltd		S	heet 2/2
Depth (m)	Sample	e / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
10.50-10.95 10.50-10.95 10.50-10.95	B22 SPT N= D23 TCR	=28 SCR	10.50 RQD	DRY FI	3,4/5,7,8,8		(3.40)				
11.00 11.20 12.00-12.44 12.00-12.44 11.90 12.00-12.45 12.80	83	23	0	NI	D24 5,7/9,12,15,14 SPT 50/290 D26 B25 D27			Blue grey MUDSTONE, recovered as very stiff, friable, sandy, gravelly clay. Gravel is angular to subangular, fine and medium.			
12.80 13.50-13.58 13.50-13.58 14.00	76	57	41	15	25/50 CPT 25*/35 50/40 D28		(1.30) 12.80 (0.70) 13.50 (0.50) 14.00	Blue grey MUDSTONE, recovered as slightly clayey, slightly sandy, angular to subangular, fine to coarse gravel. Red blue grey, moderately weak to very weak, highly weathered SILTSTONE with some intervals of angular to subangular, medium to coarse gravels. Discontinuities are inclined at 25-30 degrees, planar to moderately rough.			
	96	74	67	13.5			(2.00)	Moderately strong to strong, dark red brown, moderately weathered, silty SANDSTONE with occasional bands of soft, red brown clay at 14.90m. Discontinuities are inclined 20 degrees, rough, planar and infilled/coated with soft clay.			
15.50 16.00 16.47	83	61	49	NI 3			16.00 (0.47) 16.47 (0.53) 17.00	Moderately weak to very weak, dark red, highly weathered SILTSTONE. Moderately strong to strong, grey red brown, silty SANDSTONE. Discontinuities inclined at 30 degrees with soft clay on surfaces.			
17.00								Complete at 17.00m			
Remarks Chiselling fro	om 13.10m	n to 13.50r	n for 1.00	hour.					Scale (approx)	La B	ogged y
									1:50 Figure N 4027		GP H17

Figure A2.2

Window Sample Hole Records

Interiment Interiment Addars Weight Assembly Government Addars Addars Sender Sender Sender Addars Addars Sender Sen	Excavation	IAN FAR ASSOCIA	TES	s	Ground	Level (mOD)	Warren Hall Site - Broughton Client	Number WS01
Desk Virite Virit Virit Virit	Drive-in Wi	ndow Sampler					Welsh Assembly Government	Number 40274
00 D1 0 Grass over TOPSOLL (drifter's description). Solution 00 D2 0 Grass over TOPSOLL (drifter's description). Solution 00 D3 100 100 Solution Solution <td< th=""><th></th><th></th><th>Location</th><th></th><th>Dates 17</th><th>/01/2008</th><th></th><th></th></td<>			Location		Dates 17	/01/2008		
50 D2 D2 Fed brown, very claysy SAND with packets of light gray sit. 50 50 D4 100 Stiff, red bown, gravely CLAY with partings of light gray sit. 51 50 D4 100 Stiff, red bown, very claysy SAND. 51 50 D4 100 Stiff, red bown, very sity SAND. 51 50 D4 100 Stiff, red bown, very sity SAND. 51 50 D5 Stiff, red bown, very sity SAND. 50 Dak red gray sit doel 52 50 D5 D5 D6 Casesing line site site site site site site site sit	Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
50 D2 D3 D3 D3 D3 D3 D3 D3 D3 D4 D4 <td< td=""><td>0.00</td><td>D1</td><td></td><td></td><td></td><td>(0.20)</td><td>Grass over TOPSOIL (driller's description).</td><td></td></td<>	0.00	D1				(0.20)	Grass over TOPSOIL (driller's description).	
.00 D3	0.50	D2				-	Red brown, very clayey SAND with pockets of light grey silt.	
.50 D4 1.60 Lite structure in angular to subargular, the and medium in the structure in the angular to subargular, the and medium in the structure in the angular to subargular, the angular, the angular, the angular, the angular, the angular,	1.00	D3				E_		
.00 D5 Image: Comparison of the prime of cool Image: Comparison of the prime of the prim of the prime of the pri	1.50	D4				(0.30)		
.00 D7	2.00	D5				(1.00)	Dark red grey brown, very silty SAND.	× · · · × · · · × · · · × · · · × · · · · × ·
.00 D7	2.70	D6				2.60 (0.20) 2.80	Firm, red brown, sandy CLAY with partings of grey silt and occasional fine gravel of coal.	× · · · · · · · · · · · · · · · · · · ·
.00 D8	3.00					(2.20)	Red brown, clayey, fine SAND (wet).	
.00 D10 Complete at 5.00m Complete at 5.00m Complete at 5.00m Final King Science (approx)	4.00 4.50						Below 4.50m: very clayey.	**************************************
Remarks Scale Scale Scale Scale Scale xxxxx1mg from 0.00m to 1.00m for 1.00 hour. Into MV	5.00					5.00		× × × × × ×
Remarks Scale (approx) Logged i:50 MV							Complete at 5.00m	
Excavating from 0.00m to 1.00m for 1.00 hour.								
	Remarks Excavating	from 0.00m to 1.00m	for 1.00 hour	<u>.</u>			Scale (approx)	Logged By

	IAN FAR ASSOCIA	MER TES				Site Warren Hall Site - Broughton	Number WS02
xcavation I Drive-in Wind	Method dow Sampler	Dimensions	5	Ground	Level (mOD)	Client Welsh Assembly Government	Job Numbe 40274
		Location		Dates 16	6/01/2008	Engineer Opus International Consultants (UK) Ltd	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
220 0.50 0.70 0.00 0.80-2.00 0.00 0.80-4.00 0.00 0.80 0.00 0.80 0.00 0.80 0.00 0.80 0.00 0.80 0.00 0.80 0.00 0.80 0.00 0.8	D1 J2 D3 D4 D5 D6 D6 D7 D8 D9 D10 D10					Soft, dark brown, clayey, sandy TOPSOIL with rootlets. Soft, dark brown, sandy CLAY. Firm, red brown, sandy CLAY with bands of silt. Occasional rootlets. Dark grey brown, clayey, fine SAND with occasional fine gravel of coal. At 3.00m: very clayey. Firm, red brown, gravelly CLAY. Gravel is subangular to angular, fine and medium including mudstone and siltstor At 5.80m: veined grey. Complete at 5.80m	
Remarks /ater level a /indow sam	t ground level durin ple hole terminated	g drilling. at 5.80m due	to obstruction.			Sca (appr	le Logged ox) By
xcavating fr	om 0.00m to 1.00m	for 1.00 hour.				1:50	D MV

P	IAN FAR ASSOCIA	MER TES				Site Warren Hall Site - Broughton	Numbe WS03
Excavation M Drive-in Wind	Method dow Sampler	Dimensior	าร	Ground	Level (mOD)	Client Welsh Assembly Government	Job Numbe 40274
		Location		Dates 17	7/01/2008	Engineer Opus International Consultants (UK) Ltd	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
.20	D1				(0.30) 0.30	Soft, dark brown, clayey, sandy TOPSOIL with rootlets.	
.70	D2				(0.70)	Soft, brown, sandy, gravelly CLAY. Gravel is subangular to angular, medium to coarse including sandstone and siltstone.	* <u>* * * * * * * * * * * * * * * * * * </u>
Bemarks						Complete at 3.00m	
Remarks Excavating fr	om 0.00m to 1.20m	for 1.00 hou	r.			Scale (approx	Logged By
						1:50 Figure	No
							74.WS03

Excavation I		Dimension	s	Ground	Level (mOD)		Job Numbe
Drive-in Wind	dow Sampler					Welsh Assembly Government	40274
		Location		Dates 18	8/01/2008	Engineer Opus International Consultants (UK) Ltd	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
220 230 30 30 .30 .30 .30 .30 .30 .30	J2 D1 J4 D3 J6 D5 D7 D8 D9 D10 D11 D12 D13					Grass over brown, clayey, sandy, slightly gravelly TOPSOIL. Gravel is subangular to subrounded, fine and medium of sandstone. Firm, mottled orange grey brown, sandy, slightly gravelly CLAY. Gravel is subangular to rounded, fine and medium including sandstone, siltstone and quartz. Below 0.60m: mottled red brown grey, slightly sandy. Orange brown, very clayey SAND. Red brown, slightly clayey SAND. Soft, dark brown, slightly sandy CLAY. Firm, light grey blue, mottled red orange brown, slightly sandy, gravelly CLAY with pockets of silt. Gravel is subangular to angular, fine and medium of siltstone. Below 4.10m: dark grey blue. Yellow brown, mottled blue grey SILTSTONE, highly weathered, recovered as stiff, slightly gravelly clay. Complete at 5.00m	
Remarks							Lagra
xcavating fr	om 0.00m to 1.00m	for 1.00 hour				Scale (approx) Logged By
						1:50	MV
							No.

	ASSOCIA	1				Warren Hall Site - Broughton D) Client	
Excavation	Method dow Sampler	Dimension	S	Ground	Level (mOD)	Client Welsh Assembly Government	Job Numbe 40274
		Location		Dates 18	/01/2008	Engineer Opus International Consultants (UK) Ltd	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
0.20 0.50 0.70 1.00-1.20 1.50-1.60 2.00 2.50 3.00 3.50 3.80-3.90	D1 J2 D3 D4 D5 D6 D7 D8 D9 D10					Grass over soft, dark brown, clayey, sandy TOPSOIL with rootlets. Soft, brown, sandy CLAY. Soft, light blue grey brown, sandy, gravelly CLAY with some plant material. Gravel is subangular to angular, fine to coarse of sandstone. Firm, light blue grey, mottled red yellow brown CLAY with partings and fissures of light blue silt. At 2.00m: with pockets of dark grey blue silt and some plant material. Below 2.50m: slightly gravelly, angular to subrounded, fine to coarse of weathered siltstone. Blue grey MUDSTONE, highly weathered, recovered as angular to subangular, medium to coarse gravel. Complete at 4.00m	
Remarks Vater lever a Excavating fi	at ground lever durir rom 0.00m to 1.00m	ng drilling. for 100 hours	5.			Scale (approx)	Logged By
						1:50	MV

	IAN FAR ASSOCIA	TES				Warren Hall Site - Broughton	Number WS06
xcavation Drive-in Win	Method ndow Sampler	Dimension	S	Ground	Level (mOD)	Client Welsh Assembly Government	Job Numbe 40274
		Location		Dates	8/01/2008	Engineer Opus International Consultants (UK) Ltd	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
2.20 2.70 2.50 2.50 2.50 2.80	D1 D2 D3 D4 D5 D6					Soft, brown, sandy, gravelly CLAY. Gravel is subangular to angular, fine to coarse including sandstone and siltstone. Stiff, red brown, sandy CLAY with thin partings and veins of dark blue grey silt and occasional fine gravel of coal. Stiff, red brown, slightly sandy, gravelly CLAY with partings and pockets of grey silt. Gravel is subangular to rounded, fine to coarse including sandstone and quartz. Below 2.50m: dark grey brown. Dark grey black SILTSTONE, recovered as stiff, sandy, gravelly clay with partings and pockets of orange yellow brown silt. Gravel is subangular to angular, medium to coarse.	
Remarks xcavating f	from 0.00m to 1.00m	for 1.00 hour				Scale (approx 1:50 Figure	MV

xcavation Met		Dimension	S	Ground	Level (mOD)	Client Welsh Assembly Government	Job Numb
	Campion	Location		Dates 14	/01/2008	Engineer Opus International Consultants (UK) Ltd	402 ⁻ Sheet
Depth (m) S	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
50 C 00 C	11 D2 D3 D4 D5					Soft, dark brown, clayey, sandy TOPSOIL with rootlets. Soft, dark sandy, slightly gravelly CLAY. Gravel is subangular to subrounded, fine to coarse including sandstone and siltstone. MADE GROUND: Firm, dark red brown, mottled grey, sandy, gravelly CLAY with bands of silt. Gravel is angular to subangular, fine to coarse including sandstone, mudstone, siltstone and some coal. Below 2.75m: stiff. Complete at 2.90m	
emarks ater level at 0.	.70m during drillir terminated at 2.5 0.00m to 1.00m	ığ.				Scale (approx) Logg
indow comple			netruction				

	IAN FAR ASSOCIA	TES				Warren Hall Site - Broughton	Number WS08
Excavation I Drive-in Wind	Method dow Sampler	Dimension	S	Ground	Level (mOD)	Client Welsh Assembly Government	Job Number 40274
		Location		Dates 15	5/01/2008	Engineer Opus International Consultants (UK) Ltd	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
0.20 0.50 0.70 1.00-1.10 1.40-1.50 2.00 2.50 3.00 3.50-3.60 4.00 5.00	D1 J2 D3 D4 D5 D6 D7 D8 D9 D10 D11					Soft, dark brown, clayey, sandy TOPSOIL with rootlets. Soft, brown, sandy, slightly gravelly CLAY. Gravel is subangular to subrounded, fine to coarse including and some cobbles of sandstone. Gravel is subangular to subrounded, medium to coarse including sandstone and mudstone. Below 2.50m: sandy clay with partings of silt. Red brown, slightly clayey, fine SAND. below 3.50m: with bands of clay. Stiff, red brown, gravelly CLAY. Gravel is subangular, medium to coarse of mudstone. Complete at 5.00m	
Remarks Water level a Excavating fr	at 0.30m during drillir om 0.00m to 1.00m	ng. for 1.00 hour		I	<u> </u>	Scale (approx)	Logged By
						1:50	MV
						Figure	No.

	ASSOCIA	1			1	Warren Hall Site - Broughton		
Excavation Drive-in Win	Method dow Sampler	Dimension	S	Ground	Level (mOD)	Client Welsh Assembly Government	Job Numi 402	
		Location		Dates 16	6/01/2008	Engineer Opus International Consultants (UK) Ltd	Shee 1/	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legen	
0.20 0.50 0.70 1.00 2.00 2.50 3.00	D1 J2 D3 D4 D5 D6 D7 D8					Soft, dark brown, clayey, sandy TOPSOIL with rootlets. Soft, brown, sandy, slightly gravelly CLAY. Gravel is subangular to subrounded, fine to coarse including sandstone and siltstone. Firm, dark red brown, sandy, gravelly CLAY with partings At 1.00m: occasional rootlets. light blue grey silt. Gravel is angular to subangular, fine and medium of sandstone and coal. Weathered SANDSTONE (driller's description). Complete at 3.30m		
Remarks Vater level a	at ground level durin rom 0.00m to 1.00m	g drilling.				Scale (approx	e Logg x) By	
xcavating f	1.00m to 1.00m	IOT I.UU NOUR				1:50	MV	

	ASSOCIA					Warren Hall Site - Broughton		
Excavation I Drive-in Wind	Method dow Sampler	Dimension	S	Ground	Level (mOD)	Client Welsh Assembly Government	Job Numbe 40274	
		Location		Dates 15/01/2008		Engineer Opus International Consultants (UK) Ltd	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	
 220 2.50 2.70 2.20 2.20 2.70 3.20 3.70 5.50 5.20 5.70 	D1 J2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12				(0.30) 0.30 (0.70) 1.00 (0.20) 1.20 (1.30) (0.50) 3.00 6.00 6.00	 MADE GROUND: Soft, dark brown, clayey, sandy TOPSOIL with rootlets. MADE GROUND: Soft, brown, sandy, slightly gravelly CLAY. Gravel is subangular to subrounded, fine to coarse including sandstone and siltstone. MADE GROUND: Brown, sandy, gravelly SILT with occasional pockets of clay. Gravel is angular to subrounded, fine to coarse including sandstone and mudstone. MADE GROUND: Firm, mottled grey brown, slightly sandy, gravelly CLAY with occasional pockets of silt and some lenses of fine sand. Gravel is subrounded, fine and medium including sandstone, siltstone, sandstone and brick. MADE GROUND: Stiff, orange brown, sandy, slightly gravelly CLAY. Gravel is angular to subrounded, fine and medium including sandstone, mudstone, siltstone and coal. MADE GROUND: Stiff, orange brown, very sandy, slightly gravelly CLAY with some plant material. Gravel is subangular to subrounded. fine to coarse including sandstone. Organic odour noted. Driller noted saturated bands of sand. Complete at 6.00m 		
Remarks Vater level a Excavating fr	at ground level during rom 0.00m to 1.00m	g drilling. for 1.00 hour		I		Scale (approx) Logged By	
						1:50	ТВ	
						Figure	No	

0.20 D1 0.50 J2 0.70 D3 1.00-1.10 D4	v Sampler Sample / Tests D1	Dimensions Location Water Depth (m)	s Field Records	Dates	Level (mOD) /01/2008 /01/2008 (Thickness) 	Client Welsh Assembly Government Engineer Opus International Consultants (UK) Ltd Description MADE GROUND: Soft, dark brown, clayey, sandy TOPSOIL with rootlets. MADE GROUND: Soft, brown, sandy, slightly gravelly CLAY. Gravel is subangular to angular, medium to coarse including sandstone and siltstone. MADE GROUND: Firm, dark red brown, grey brown, gravelly CLAY with partings of silt. Gravel is subangular to subrounded, fine to coarse including mudstone and sandstone.	Job Numbe 4027 Sheet 1/1 Legend
0.20 D1 0.50 J2 0.70 D3 1.00-1.10 D4	D1 J2 D3 D4		Field Records	14	Depth (m) (Thickness) (0.30) (0.30) (0.70) (0.70)	Opus International Consultants (UK) Ltd Description MADE GROUND: Soft, dark brown, clayey, sandy TOPSOIL with rootlets. MADE GROUND: Soft, brown, sandy, slightly gravelly CLAY. Gravel is subangular to angular, medium to coarse including sandstone and siltstone. MADE GROUND: Firm, dark red brown, grey brown, gravelly CLAY with partings of silt. Gravel is subangular to subrounded, fine to coarse including mudstone and	1/1
0.20 D1 0.50 J2 0.70 D3 1.00-1.10 D4	D1 J2 D3 D4	Water Depth (m)	Field Records	Level (mOD)	(0.30) 0.30 (0.70)	MADE GROUND: Soft, dark brown, clayey, sandy TOPSOIL with rootlets. MADE GROUND: Soft, brown, sandy, slightly gravelly CLAY. Gravel is subangular to angular, medium to coarse including sandstone and siltstone. MADE GROUND: Firm, dark red brown, grey brown, gravelly CLAY with partings of silt. Gravel is subangular to subrounded, fine to coarse including mudstone and	Legend
0.50 J2 0.70 D3 0.00-1.10 D4	J2 D3 D4				(0.70)	MADE GROUND: Soft, brown, sandy, slightly gravelly CLAY. Gravel is subangular to angular, medium to coarse including sandstone and siltstone. MADE GROUND: Firm, dark red brown, grey brown, gravelly CLAY with partings of silt. Gravel is subangular to subrounded, fine to coarse including mudstone and	
						Complete at 2.80m	
Remarks Vater level at 0.5 Vindow sample h	.50m during drillin hole terminated a	ng. at 2.80m due	to obstruction.	I		Scale (approx)	Logge By
Excavating from (1 0.00m to 1.00m	for 1.00 hour				1:50	MV

	IAN FAR ASSOCIA	TES				Warren Hall Site - Broughton	Number WS1	
xcavation Drive-in Wind	Method dow Sampler	Dimension	S	Ground	Level (mOD)	Client Welsh Assembly Government	Job Numb 4027	
		Location		Dates 14/01/2008		Engineer Opus International Consultants (UK) Ltd	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	
2.20 2.50 2.70 2.00 2.40	D1 J2 D3 D4 D5 D6 D7					MADE GROUND: Soft, dark brown, clayey, sandy TOPSOIL with rootlets. MADE GROUND: Soft, brown, sandy, slightly gravelly CLAY. Gravel is angular, medium to coarse including sandstone and siltstone. Below 0.70m: with some cobbles. MADE GROUND: Soft, dark grey brown, sandy, gravelly CLAY with partings of dark grey silt. Gravel is subangular to subrounded, medium to coarse including sandstone and fragments of brick. Firm becoming stiff, dark red brown, veined grey, sandy, gravelly CLAY. Gravel is subangular to subrounded, medium to coarse including sandstone. Occasional rootlets Complete at 2.40m		
Remarks Vater level a Vindow sam	at 0.30m during drillin iple hole terminated	ng. at 2.40m due	to obstruction (possible b	boulders).	<u> </u>	Scale (approx)	Logge By	
xcavating fi	rom 0.00m to 1.00m	tor 1.00 hour				1:50	MV	

	ASSOCIA					Warren Hall Site - Broughton		13	
Excavation I Drive-in Wind	Method dow Sampler	Dimension	S	Ground	Level (mOD)	Welsh Assembly Government		5e 74	
		Location		Dates 14/01/2008		Engineer Opus International Consultants (UK) Ltd		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	d	
0.20 0.50 0.70 1.00-1.10 1.50-1.60 1.80 2.30 2.80 3.30 3.30 3.70	D1 J2 D3 D4 D5 D6 D7 D8 D10 D9 D11					MADE GROUND: Soft, dark brown, clayey, sandy TOPSOIL with rootlets. MADE GROUND: Soft, brown, sandy, gravelly CLAY. Gravel is subangular to angular, medium to coarse including sandstone and siltstone. MADE GROUND: Stiff, dark red brown, sandy, gravelly CLAY with thin partings and laminations of grey silt. Gravel is angular to subangular, fine to coarse including sandstone and coal. Stiff, grey red brown CLAY (possible weathered sandstone) Complete at 3.70m			
Remarks Vater level a Vindow sam	at 0.50m during drillin Iple hole terminated	ng. at 3.70m due	to obstruction (possible	rockhead).	<u> </u>	Scale (approx)	Logge By	⊥ e	
xcavating fi	rom 0.00m to 1.00m	for 1.00 hour				1:50	MV	_	
						Figure		-	

P	IAN FAR ASSOCIA	MER TES				Site Warren Hall Site - Broughton		Number WS14	
Excavation	Method dow Sampler	Dimension	IS	Ground	Level (mOD)	Client Welsh Assembly Government		Job Number 40274	
		Location		Dates 17/01/2008		Engineer Opus International Consultants (UK) Ltd		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	
	D1				(0.30) 0.30	Soft, dark brown, clayey, sandy TOPSOIL with rootlet			
.20 .70	D1 D2				(0.70)	Soft, brown, sandy, slightly gravelly CLAY. Gravel is subangular to angular, medium to coarse including sandstone and siltstone.			
						Complete at 2.40m			
Remarks Excavating fr	rom 0.00m to 1.20m	for 1.00 hour	r.			(a)	Scale pprox)	Logged By	
							1:50		
						F	igure N	o. 4.WS14	

Image: contract of the contr	Excavation	ASSOCIA Method dow Sampler	Dimension	s	Ground	Level (mOD)	Client Welsh Assembly Government	Job Number	
Price Description Consistence Description Loopen 90 10 10 10 10 10 10 10 90 10 10 10 10 10 10 10 90 04 1 1 1 1 10 10 90 05 1 1 1 1 1 1 10 90 05 1 1 1 1 1 1 1 1 90 05 1 1 1 1 1 1 1 1 1 90 05 1 1 1 1 1 1 1 1 1 90 07 1 1 1 1 1 1 1 1 1 1 1 90 07 1			Location		Dates				
S0 11 Grass over MADE GROUND: Topool (drifter's description). S0 50 12 0.00 93 0.01 0.01 S0 S0 0.01 S0 S0 0.01 S0 S0<							Opus International Consultants (UK) Ltd	1/1	
90 102 000 D3 MDE GROUND: Firm, red grey trown, sandy, gravelly CUTA with conduction and familia of point of birds, and ool D4 00 D5 Language	Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	
.00 D6 At 3.00m: organic odour noted. .90 D7 D7 .90 D7 Complete at 3.90m .90 D7 .90						(0.30)	Grass over MADE GROUND: Topsoil (driller's description).		
.00 D6 At 3.00m: organic odour noted. .90 D7 D7 .90 D7 Complete at 3.90m .90 D7 .90).50).50	J1 D2					light grey silt. Gravel is subangular to angular, medium to coarse including sandstone and fragments of brick and		
.00 D6 At 3.00m: organic odour noted. .90 D7 D7 .90 D7 Complete at 3.90m .90 D7 .90	.00	D3				(1.70)			
.00 D6 At 3.00m: organic odour noted. .90 D7 D7 .90 D7 Complete at 3.90m .90 D7 .90	.50	D4							
.00 D6 A13.00m: organic odour noted. .90 D7 A13.00m: organic odour noted. .90 D7 Complete at 3.90m .90 D7 Endowski at 3.90m .90 Endowski at 3.90m Endowski	2.00	D5					MADE GROUND: Firm, red grey brown, sandy, gravelly CLAY with bands of light grey silt. Gravel is angular to subangular, fine to coarse including sandstone and coal.		
Remarks Remarks Scele of Struction. Kopgen	3.00	D6					At 3.00m: organic odour noted.		
Remarks Remarks Scele of Struction. Kopgen	3.90	D7				3.90			
Remarks Remarks Scele of Struction. Kopgen							Complete at 3.90m		
Remarks Image: Scale (sprov.) Scale (sprov.) Scale (sprov.) bogs									
Remarks Image: Scale (sprov.) Scale (sprov.) Scale (sprov.) bogs									
Remarks Vindow sample hole terminated at 3.90m due to obstruction. Scale (approx) Scale (by Scale) bggg									
Remarks Vindow sample hole terminated at 3.90m due to obstruction. xxxavating from 0.00m to 1.00m for 1.00 hour.									
Remarks /indow sample hole terminated at 3.90m due to obstruction. xcavating from 0.00m to 1.00 m for 1.00 hour.						E			
Remarks Vindow sample hole terminated at 3.90m due to obstruction. xcavating from 0.00m to 1.00 m for 1.00 hour.									
Remarks Scale (approx) Logge By /indow sample hole terminated at 3.90m due to obstruction. scale (approx) b						<u> </u>			
Vindow sample hole terminated at 3.90m due to obstruction. xcavating from 0.00m to 1.00m for 1.00 hour.									
	Remarks /indow sam xcavating f	nple hole terminated rom 0.00m to 1.00m	at 3.90m due for 1.00 hour	to obstruction.			Scale (approx) Logge By	
	5						1:50	MV	

Depth (m) Sample / Tests	Location				Welsh Assembly Government	Numbe
Depth (m) Sample / Tests			Dates 17	/01/2008	Engineer Opus International Consultants (UK) Ltd	40274 Sheet 1/1
	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)		Legend
30 J2 80 D3 00 D4 50 D5 50 D7					Grass over MADE GROUND: Stiff, dark grey red brown, sandy, gravelly CLAY with pockets and partings of dark grey silt. Gravel is angular to subangular, fine to coarse including mudstone, quartz, coal and brick. Red orange brown, very clayey, gravelly SAND. Gravel is subangular to angular, fine and medium of sandstone. Firm, red brown, sandy, gravelly CLAY. Gravel is subangular to angular, fine and medium including sandstone and siltstone. Below 1.50m: soft. Light grey, red brown SILTSTONE. Complete at 2.50m	
Remarks indow sample hole terminate cavating from 0.00m to 1.00	ed at 2.50m due	e to obstruction (possible			Scale (approx)	Loggec By

Excavation		Dimension	S	Ground	Level (mOD)		Job Number	
Drive-in Wi	indow Sampler					Welsh Assembly Government	40274	
		Location		Dates 18/01/2008		Engineer Opus International Consultants (UK) Ltd	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	
0.20 0.70 1.00 1.30 1.50 2.00 2.40	D1 D2 D3 J4 D5 D6 D7					Grass over soft, dark brown, clayey, sandy TOPSOIL with rootlets. Soft, brown, sandy, slightly gravelly CLAY. Gravel is subangular to subrounded, fine to coarse including sandstone and siltstone. Stiff, dark red brown, sandy, gravelly CLAY with partings of light grey silt. Gravel is subrounded to rounded, fine to coarse including siltstone and coal. Dark grey to black SILTSTONE, recovered as stiff, sandy, gravelly clay. Complete at 2.40m		
Remarks Window sa Excavating	mple hole terminated from 0.00m to 1.00m	at 2.40m due for 1.00 hour	e to obstruction.			Scale (approx) 1:50	Logged By MV	

P	IAN FAR ASSOCIA	MER TES				Site Warren Hall Site - Broughton		Number WS18	
Excavation I	Method dow Sampler	Dimension	s	Ground	Level (mOD)	Client Welsh Assembly Government		Job Number 40274	
		Location		Dates 18/01/2008		Engineer Opus International Consultants (UK) Ltd		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	
.20	D1 D2				(0.30)	Soft, dark brown, clayey, sandy TOPSOIL with root Soft, brown, sandy CLAY.	lets.		
						Complete at 2.00m			
lemarks cavating fr	om 0.00m to 1.20m	for 1.00 hour			<u>F</u>		Scale (approx)	Logged By	
							1:50		
							Figure N	o. 4.WS18	

Figure A2.3

Dynamic Probe Hole Records

	IAN FAI ASSOCI	ATES			en Hall S	Site - Br	roughto	'n					Prob Num DP	
lethod Dynamic Pr	robe	Cone Dimensions	Ground Level (mO		h Assem	ibly Go	vernme	ent					Job Numi 402	
		Location	Dates 17/01/2008	Engine	eer s Internat	ional C	onsulta	ants (Uk	<) Ltd				Shee 1/	
Depth (m)	Blows for Depth Increment	Field Records	Level Depth (mOD) (m)				Blows	for De		cremer	nt			
00-0.10	0			0	3 6	6	9 -	12 1	15	18	21	24 2	27	;
10-0.20 20-0.30 30-0.40	0 0 0													-
40-0.50 50-0.60 60-0.70	1 1 2		0.50											_
70-0.80 80-0.90 90-1.00	2 2 2													_
00-1.10 10-1.20 20-1.30	1 0 1		1.00											_
30-1.40 40-1.50 50-1.60	0 1 1		1.50											_
60-1.70 70-1.80 30-1.90														_
90-2.00 00-2.10 10-2.20	1 4 4		2.00		+									
20-2.30 30-2.40 40-2.50	4 5 4 5 5 3 2 4 3				$\left \right\rangle$									_
50-2.60 60-2.70 70-2.80	5 3 2		2.50											
30-2.90 90-3.00 90-3.10	4 3 1		3.00		\geq									
10-3.20 20-3.30 30-3.40	4 5 10						>							_
40-3.50 50-3.60 50-3.70	4 4 12		3.50											
70-3.80 80-3.90 90-4.00	12 10 9							-						_
00-4.10 10-4.20 20-4.30	3 2 2		4.00											_
30-4.40 40-4.50 50-4.60	3 3 4		4.50											
60-4.70 70-4.80 80-4.90	7 6 11					2								-
90-5.00 00-5.10 10-5.20	16 14 11		5.00											_
20-5.30 30-5.40 40-5.50	11 9 19						\leq							-
50-5.60	25		5.50											_
			6.00											_
														_
			6.50											-
														_
			7.00											_
			7.50											_
														_
			8.00											_
emarks												Scale approx)	Logg By	J
												1:40	n/	/-

	IAN FAI ASSOCI				Site War	rren Hall	l Site - E	Broughto	on					Probe Numi DP	
Method Dynamic Pr	robe	Cone Dimensions	Ground	Level (mOD)		t sh Asse	mbly G	overnm	ent					Job Numl 402	
		Location	Dates	01/2008	Engin Opu	ieer is Intern	ational	Consult	ants (UI	K) Ltd				Shee 1/	
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0	5	10			pth Ir 25	ncreme 30	nt 35	40 4	45	5
).00-0.10).10-0.20	1 1			0.00		1		+				1			=
).20-0.30).30-0.40).40-0.50).50-0.60	1 1 0 1			0.50											
).60-0.70).70-0.80).80-0.90).90-1.00	0 1 0 1														_
.00-1.10 .10-1.20 .20-1.30 .30-1.40	1 0 1 0			1.00											-
1.40-1.50 1.50-1.60 1.60-1.70 1.70-1.80	1 0 0			1.50											-
.80-1.90 .90-2.00 2.00-2.10 2.10-2.20	0 1 1 0			 2.00											-
2.20-2.30 2.30-2.40 2.40-2.50 2.50-2.60	1 1 1			 											-
2.60-2.70 2.70-2.80 2.80-2.90 2.90-3.00	2 3 3 2 1			3.00	$ \rangle$										-
3.00-3.10 3.10-3.20 3.20-3.30 3.30-3.40				-											-
3.40-3.50 3.40-3.50 3.50-3.60 3.60-3.70 3.70-3.80				3.50											_
3.80-3.90 3.90-4.00 4.00-4.10 4.10-4.20	1 1 2 4 3			4.00											_
1.20-4.30	3 2 2 2				7										_
1.40-4.50 1.50-4.60 1.60-4.70 1.70-4.80 1.80-4.90 1.90-5.00	4 5 4 3			5.00		$\left \right $									-
5.00-5.10 5.10-5.20 5.20-5.30 5.30-5.40	2 2 2 4 5 4 3 3 3 4 4 5 4 5 4 5 8					1									-
5.40-5.50 5.50-5.60 5.60-5.70 5.70-5.80	5 4 5 8			5.50											-
5.80-5.90 5.90-6.00 5.00-6.10 5.10-6.20 5.20-6.22	10 21 28 40 50									-					-
6.20-6.22	50			6.50											-
															-
															-
				7.50											_
				8.00											-
Remarks													Scale (approx)		
													1:40 Figure	n/: No.	a

	IAN FAI ASSOCI	ATES				en Hall	Site - Bi	roughto	n					Prob Num DP	
Method Dynamic Pr	robe	Cone Dimensions	Ground	Level (mOD)		h Asse	mbly Go	vernme	ent					Job Num 402	
		Location	Dates	01/2008	Engine Opus		ational C	Consulta	ants (UI	<) Ltd				Shee 1/	
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0			Blows	for De	pth Inc	remen				-
).00-0.10).10-0.20	0 0			0.00		3	6	9	12	15	18	21	24 2	27	3
).20-0.30).30-0.40).40-0.50	0 0 1														1
).50-0.60).60-0.70).70-0.80	2			0.50											_
).80-0.90).90-1.00 .00-1.10				 											
.10-1.20 .20-1.30 .30-1.40	0 0 0														
1.40-1.50 1.50-1.60 1.60-1.70	0 1 0			1.50	\geq										-
.70-1.80 .80-1.90	1 0			-											
.90-2.00 2.00-2.10 2.10-2.20 2.20-2.30	0 1 1 0			2.00											_
2.20-2.30 2.30-2.40 2.40-2.50 2.50-2.60	0 1 1 1			 											_
2.60-2.70 2.70-2.80 2.80-2.90	2 2 1			2.30 											_
2.90-2.90 2.90-3.00 3.00-3.10 3.10-3.20				3.00		\succ									_
3.20-3.20 3.20-3.30 3.30-3.40 3.40-3.50	2 4 3 3 4 7			-											-
3.40-3.30 3.50-3.60 3.60-3.70 3.70-3.80	/ 12 10 11			3.50				\geq	>						
3.80-3.90 3.90-4.00 4.00-4.10	12 11 12			4.00				$\left \right\rangle$	<u>}</u>						-
100-4.10 10-4.20 1.20-4.30 1.30-4.40	5 16 18			4.00		-	\leq								_
1.40-4.50 1.50-4.60	24 21 19			4.50								\geq			-
1.60-4.70 1.70-4.80 1.80-4.90 1.90-5.00	13			- - - - - - - - - - - - - - - - - - -											_
5.00-5.10 5.10-5.20 5.20-5.30	8 8														-
5.30-5.40 5.40-5.50	8 7 7			5.50			\int								_
5.50-5.60 5.60-5.70 5.70-5.80	6 8 7			5.50 		-	5								-
5.80-5.90 5.90-6.00 5.00-6.10	8 8 8 8 7 7 6 6 8 7 7 7 8 9 11			6.00											_
.10-6.20 .20-6.30 .30-6.40	8 9 11														
.40-6.50 .50-6.60 .60-6.70	13 12 12 12			6.50					2						_
5.70-6.80 5.80-6.90 5.90-7.00	11 19			6.50				- <	1		>				_
7.00-7.10 7.10-7.20 7.20-7.30	11 11 13					1									_
7.30-7.40 7.40-7.50 7.50-7.60	20 23 25			 7.50								+	\leftarrow		_
															_
Remarks				8.00									Scale	Logg By	
												C	approx)		
												ļ	1:40 Figure	n/ No.	a

	IAN FAI ASSOCI				War	ren Hal	I Site - E	Broughto	on					Probe Numb DP	
Method Dynamic Pi	robe	Cone Dimensions	Ground	Level (mOD)			embly Go	overnme	ent					Job Numb 402	
		Location	Dates	01/2008	Engin Opu		ational (Consulta	ants (Uk	≺) Ltd				Sheet 1/1	
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0	5	10		for Dep	pth In 25	icremei 30	nt 35	40 4	45 5	5
).00-0.10).10-0.20).20-0.30	0 1 1			0.00											-
).30-0.40).40-0.50).50-0.60).60-0.70				0.50											_
).70-0.80).80-0.90).90-1.00	1														-
.00-1.10 .10-1.20 .20-1.30 .30-1.40	3 2 3 2			1.00 											-
.40-1.50 .50-1.60 .60-1.70 .70-1.80	2 3 2 2			1.50											-
.80-1.90 .90-2.00 2.00-2.10 2.10-2.20	2 3 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2			2.00											-
2.20-2.30 2.30-2.40 2.40-2.50 2.50-2.60	1 2 1			2.50											-
2.60-2.70 2.70-2.80 2.80-2.90 2.90-3.00	1 1 1 1			3.00											-
3.00-3.10 3.10-3.20 3.20-3.30 3.30-3.40				-											-
3.40-3.50 3.50-3.60 3.60-3.70 3.70-3.80	3 3 2 3			3.50											-
3.80-3.90 3.90-4.00 4.00-4.10 4.10-4.20	322233233766			4.00		\mathbf{i}									-
4.20-4.30 4.30-4.40 4.40-4.50 4.50-4.60				- - - - - - - - - - - - - - - - - - -											-
4.60-4.70 4.70-4.80 4.80-4.90 4.90-5.00 5.00-5.10	6 7 8 7 8 9 9					+									-
5.00-5.10 5.10-5.20 5.20-5.30 5.30-5.40	10 10 10 10 10			5.00											-
5.40-5.50 5.50-5.60 5.60-5.70	14 18 18			5.50											-
5.70-5.80 5.80-5.90 5.90-6.00 5.00-6.10	21 17 22 25							<							-
6.10-6.20 6.20-6.30 6.30-6.36	22 25 29 33 50														-
				6.50											-
															-
				- - - 7.50											-
				8.00											-
Remarks										-			Scale (approx)	Logg By	e
													1:40 Figure	n/a No.	2

	IAN FAI ASSOCI	ATES				en Hall	Site - B	roughto	n				Probe Numl	
lethod Dynamic Pi	robe	Cone Dimensions	Ground	Level (mOD)		h Asser	nbly Go	vernme	ent				Job Numl 402	
		Location	Dates)1/2008	Engine Opus		ational C	Consulta	ints (UK) Ltd			Shee 1/	
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0	5	10		for Dep			40 4	15	5
.00-0.10 .10-0.20	0			0.00		Ť				.0 (+
.20-0.30 .30-0.40 .40-0.50	0 0 0													_
50-0.60 60-0.70 70-0.80	0 0 0			0.50										
80-0.90 90-1.00 00-1.10	1 1 2			1.00										-
10-1.20 20-1.30 30-1.40	2 2 2													-
40-1.50 50-1.60 60-1.70	2 2 2			1.50										
70-1.80 80-1.90 90-2.00	2 2 2 2 2 2 2 2 2 3 3 3 4				$\left \right $									-
00-2.10 10-2.20 20-2.30	4 4 4			2.00 										
30-2.40 40-2.50 50-2.60	4 4 3 6 6 5 5 6 6 6 6 6 7			2.50		$\left \right\rangle$								-
60-2.70 70-2.80 80-2.90	5 5 6					(
90-3.00 00-3.10 10-3.20	6 6 6			3.00										-
20-3.30 30-3.40 40-3.50	6 7 9			- 										
50-3.60 60-3.70 70-3.80	10 13 12			3.50			\geq							-
80-3.90 90-4.00 00-4.10	9 10 8			4.00										
10-4.20 20-4.30	12 17			- 										-
30-4.40 40-4.50 50-4.53	24 25 50			4.50										
				- 										-
				5.00										
				 5.50										-
				 6.00										_
				-										-
				6.50 										_
				 7.00										
														_
				7.50										_
														-
lemarks				8.00								Scale approx)	Logg By	-
												1:40	n/a	12
												Figure		-

	IAN FAI ASSOCI	ATES			Site Warren	n Hall S	ite - Br	oughtc	'n					Probe Numb DP	
lethod Dynamic Pi	robe	Cone Dimensions	Ground	Level (mOD)		Assem	bly Go	vernme	ent					Job Numb 402	
		Location	Dates)1/2008	Enginee Opus I	r nternati	onal C	onsulta	ants (Uk	() Ltd				Sheet 1/ ⁻	
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)				Blows	for De	pth In	cremen				_
.00-0.10	0			0.00	0 3	8 6	; ;	9	12 1	15	18	21	24 2	27 :	3
.10-0.20 .20-0.30 .30-0.40	0 0 0														-
.40-0.50 .50-0.60 .60-0.70	0 0 1			0.50											-
70-0.80 80-0.90				- 	$ \rightarrow$									<u> </u>	
90-1.00 00-1.10 10-1.20	2 3 3			1.00											-
20-1.30 30-1.40 40-1.50	2 2 2			-											
50-1.60 60-1.70	23			1.50										<u> </u>	
70-1.80 80-1.90 90-2.00	4 5 6			-		\rightarrow									-
00-2.10 10-2.20 20-2.30	2 3 2 3 3 2 2 2 2 2 3 4 5 6 6 6 7			2.00			\								
30-2.40 40-2.50 50-2.60	7 10 10			 			<u> </u>							<u> </u>	_
60-2.70 70-2.80	10 10			2.30											
80-2.90 90-3.00 00-3.10	9 14 15			3.00											
10-3.20 20-3.30 30-3.40	20 18 18			-							2			<u> </u>	
40-3.50	25			3.50											-
				4.00										<u> </u>	_
				- 											-
				4.50											
				-										<u> </u>	_
				5.00											-
															_
				5.50											_
				 											-
														<u> </u>	
				6.50											-
															-
				7.00										<u> </u>	
														<u> </u>	-
				7.50											-
				-										<u> </u>	
Remarks				8.00									Scale approx)	Logg By	_
													1:40 Figure	n/a	2

	IAN FAI ASSOCI	ATES				en Hall S	Site - Bı	roughto	n					Prob Num DP	
lethod Dynamic Pr	robe	Cone Dimensions	Ground	Level (mOD)		n Assen	nbly Go	vernme	ent					Job Num 402	
		Location	Dates	01/2008	Engine		tional C	oncult	ants (UK	() I td				Shee 1/	
Depth	Blows for				Opus	Interna			for Dep		remer	nt			
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0	5			•		30	35	40 4	45	5
00-0.10 10-0.20 20-0.30	0 1 2			0.00	\sum										
30-0.40 40-0.50	1			-	$ \leq$										
50-0.60 50-0.70	2 1 2			0.50	$ \square$										
70-0.80	2 2 2 1			-											
30-0.90 90-1.00	1														
)0-1.10 10-1.20	3 2			1.00											
20-1.30 30-1.40	2 3 3 3														
40-1.50 50-1.60	4			1.50								1			
60-1.70 70-1.80	3										_	+			
30-1.90 90-2.00	33			-								-			-
0-2.10	3			2.00	+										
20-2.30	3233466					\mathbb{N}^{-}									-
40-2.50 50-2.60	6			2.50								+			-
60-2.70 70-2.80	6 7 6					\rightarrow						-			-
0-2.80 0-2.90 0-3.00	12 12			-		\vdash	┝──								_
0-3.10	16			3.00			\mid	>				-			_
10-3.20 20-3.30	11			-			5								_
30-3.40 40-3.50	10 8						1								
50-3.60 60-3.70	8 5 7			- 3.50 -		K						_			_
70-3.80 80-3.90	11 12						\triangleright					_			_
90-4.00 00-4.10	5 12			4.00		\leq	>					_			_
10-4.20 20-4.30	4														
30-4.40 40-4.50	4														
50-4.60 60-4.70	4			4.50											
70-4.80 30-4.90				-	(
90-5.00 90-5.10	4 5 4 5			5.00	<										
10-5.20	4			- 5.00											
20-5.30 30-5.40 40-5.50	4			-											
50-5.60	4			5.50											-
60-5.70 70-5.80	4 4														
30-5.90 90-6.00	4 7 7														-
00-6.10 10-6.20	11 10			6.00			\geq								-
20-6.30 30-6.40	86											+			-
40-6.50 50-6.60	5 5			6.50		ſ						-			-
60-6.70 70-6.80	4 5			-		1						-			
30-6.90 90-7.00	8 6 5 5 4 5 8 6					\geq						-			-
00-7.10	9 10			7.00 		\vdash	<u></u>					+		-	-
20-7.30 30-7.40	9					+						+	_		-
40-7.50 50-7.60	9 9 9 8			7.50		\vdash								-	_
60-7.70 70-7.80	9 9 9					\vdash						+			_
30-7.90 90-8.00	9														_
emarks				8.00			\						Scale	Logg By	- J
													(approx)	ву	
													1:40	n/	12
													Figure	NO.	
													402		P

	IAN FAI ASSOCI				Site Warrei	n Hall Si	ite - Br	oughto	n					Prob Num DP	
llethod Dynamic Pro	obe	Cone Dimensions	Ground L	.evel (mOD)		Assemb	oly Gov	vernme	ent					Job Num 402	
		Location	Dates	1/2008	Enginee Opus I	e r Internatio	onal C	onsulta	ints (Uk	<) Ltd				Shee 2/	et /2
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0 5	5 10			for De	-			40 4	45	5
.00-8.10 .10-8.20	10 11			8.00						-		+			T
20-8.30 30-8.40 40-8.50 50-8.60	12 11 10 13			8.50			$\overline{\underline{\ }}$								_
60-8.70 70-8.80 80-8.90 90-9.00	13 10 10 11						>								_
00-9.10 10-9.20 20-9.30 30-9.40	10 11 11 12			9.00											_
40-9.50 50-9.60 60-9.70 70-9.80	13 12 11 12			9.50			5								_
90-10.00).00-10.10).10-10.20	9 9 10 8			10.00											_
80-9.90 10-10.00 .00-10.10 .10-10.20 .20-10.30 .30-10.40 .40-10.50 .50-10.60 .60-10.70 .70-10.80 .80-10.90 .90-11.00 .00-11.10 .10-11.20 .20-11.30	9 11 16 16 16			 10.50											_
).70-10.80).80-10.90).90-11.00	18 18 18 15			 11.00											_
.10-11.20 .20-11.30 .30-11.40 .40-11.50	10 12 14 14					<	\leq								_
1.30-10.40 1.40-10.50 1.50-10.60 1.50-10.60 1.50-10.70 1.70-10.80 1.90 1.90 1.90 1.90 1.100 1.00-11.10 1.00-11.20 1.000 1.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.000	15 12 12 12			— 11.50 —											_
1.90-12.00 2.00-12.10 2.10-12.20 2.20-12.30	22 15 12 14			12.00			\langle		>						_
2.40-12.50 2.50-12.60 2.60-12.70	16 18 18 22			12.50				$\overline{}$							_
2.70-12.80 2.80-12.90 2.90-13.00 3.00-13.10	22 22 24 23 24 25 29 31			13.00					$\left \right\rangle$						_
3.10-13.20 3.20-13.30 3.30-13.40 3.40-13.50 3.50-13.60	25 29 31 37 43 48			 											_
3.60-13.70 3.70-13.76	43 48 50														-
				14.00											_
				14.50											_
				15.00											
				 15.50											_
															_
lemarks			F	16.00				<u> </u>	<u> </u>	<u> </u>	<u> </u>	+	Scale (approx)	Logg By	30
													1:40 Figure	n/	/2

	IAN FAI ASSOCI	ATES				n Hall S	Site - Br	roughto	n					Probe Numi	
lethod Dynamic Pi	robe	Cone Dimensions	Ground	Level (mOD)		Assem	ibly Go	vernme	nt					Job Numl 402	
		Location	Dates	01/2008	Enginee		ional C	onsulta	nts (UK)) I td				Shee 1/2	
Depth	Blows for				Opusi				for Dep		rement				
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0 5	5 1			20 2				40 4	15	5
.00-0.10 .10-0.20 .20-0.30	0			0.00											
30-0.40	1 2			-	$ \rangle$										
40-0.50 50-0.60	1 2			0.50											
60-0.70 70-0.80	2 2 2 3 4														
30-0.90 90-1.00	34														-
0-1.10 0-1.20	4			1.00											-
20-1.30	4 4 2														-
0-1.50	3 2 2 1														-
0-1.60 0-1.70	1			1.50	$ \leftarrow $										_
70-1.80 30-1.90	2 3														_
0-2.00 0-2.10	4 4			2.00											_
0-2.20	3 4 5 5 4														
0-2.40	5														
0-2.60	4			2.50											
'0-2.80	4			-											
0-2.90 0-3.00	3 2 2 1			-											
0-3.10 0-3.20	2			3.00											
0-3.30	2 1														-
40-3.50 50-3.60	2			3.50											-
60-3.70 70-3.80	2 2 5 5 6 6														-
30-3.90	6			-		\rightarrow									_
90-4.00 90-4.10	23			4.00											_
10-4.20 20-4.30	4				$ \rightarrow $										_
30-4.40 40-4.50	23														
50-4.60 50-4.70	2			4.50											
70-4.80 80-4.90	3			<u> </u>											
90-5.00 00-5.10	2			 5.00	<										
0-5.20	7			- 3.00											
20-5.30 30-5.40	5			-		$\langle -$									Ī
40-5.50 50-5.60	2 3 2 2 3 4 2 4 7 6 5 7 8 8			5.50											-
0-5.70 0-5.80	10					$- \langle$									-
80-5.90 90-6.00	10 10			-											-
0-6.10 0-6.20	7 9			6.00		\prec									
20-6.30	10					\rightarrow									_
0-6.50	8 7					-									
0-6.70	6 6 7			- 0.50		-{									_
0-6.80	8 6					\rightarrow									
0-7.00 0-7.10	4			7.00		/									_
0-7.20 20-7.30	3 4 3			-											_
80-7.40 10-7.50	4														
50-7.60 50-7.70	4			7.50											_
70-7.80 30-7.90	4 5 5 6			<u>-</u>											
90-8.00	6			8.00											_
lemarks												; (Scale approx)	Logg By	Je
													1:40	n/	12
												Ī	Figure	No.	

P	IAN FAI ASSOCI	R M E R A T E S			Site Warre	en Hall	Site - E	Broughto	on					Probe Numi DP	
Method Dynamic Pr	robe	Cone Dimensions	Ground I	Level (mOD)	Client Welst	n Asser	nbly G	overnme	ent					Job Numl 402	
		Location	Dates	01/2008	Engine Opus		ational (Consulta	ants (Uk	() Ltd				Shee 2/2	
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)				Blows	for De	pth Inc					_
3.00-8.10 3.10-8.20	8 8			8.00	0	5 	10	15	20 2	25	30	35	40 4	45	5
3.20-8.30 3.30-8.40 3.40-8.50	10 11 11			-											_
.50-8.60 .60-8.70 .70-8.80	11 12 15			8.50										<u> </u>	
.80-8.90 .90-9.00 .00-9.10	16 16			9.00											-
10-9.20 20-9.30 30-9.40	23 23 25 35 42 50													<u> </u>	_
.40-9.50 .50-9.57	42 50			9.50											-
				-										<u> </u>	
				10.00											-
				 10.50										<u> </u>	-
															-
				11.00											-
				11.50											-
				 12.00											
															-
				12.50											
															-
				13.00											
				13.50											
				14.00											-
															_
				14.50											_
															_
				15.00 										<u> </u>	-
				15.50											
															_
Remarks				16.00									Scale (approx)	Logg By	
													1:40	n/a	
													Figure		

P	IAN FAI ASSOCI				Site Warrer	n Hall S	ite - Br	oughtc	on					Prob Num DF	
ethod)ynamic Pi	robe	Cone Dimensions	Ground L	Level (mOD)	Client Welsh	Asseml	bly Gov	vernme	ent					Job Num 402	
		Location	Dates		Enginee									Shee	et /1
	1		16/0	01/2008	Opus lı	nternati								1.	
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0 5	1(epth I 25	ncreme 30	ent 35	40	45	5
00-0.10 10-0.20	Blows for Depth Increment 0 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			0.00						+					-
20-0.30 30-0.40 40-0.50	2 2 3														
50-0.60 50-0.70	3			0.50						-					
70-0.80 30-0.90 90-1.00	333									+		_			
0-1.10 0-1.20	3			1.00											_
20-1.30 30-1.40 40-1.50	2														_
60-1.60 60-1.70 70-1.80	3 2 2			 1.50						-					
0-1.90 0-2.00	22									+				-	-
0-2.20	2 2 2 2			2.00											
0-2.40 0-2.50	2 2			2.50						-					_
)-2.10)-2.20)-2.30)-2.40)-2.50)-2.60)-2.70)-2.80)-2.90)-3.00)-3.10)-3.20	2 2 2			-										-	_
	4 4 14			 3.00											
0-3.20 0-3.21	14 24 50										_				_
				3.50											_
															-
				4.00											
										-					
				4.50											-
															-
															_
				5.50											_
				5.50											
				6.00						-					
															_
				6.50											
										_					
				7.00						-		_			_
				-							_			-	_
				7.50											_
										-					
emarks				8.00						-			Scale (approx	Logo By	ge
													1:40	n. No.	/a

	IAN FAI ASSOCI	ATES				en Hall Site	e - Broi	ughtor	1					Prob Num DP	
ethod)ynamic Pr	robe	Cone Dimensions	Ground I	.evel (mOD)		n Assembl	y Gove	ernmer	nt					Job Num 402	
		Location	Dates		Engine									Shee	
			15/0	1/2008	Opus	Internation	nal Cor	nsultar	nts (UK	() Ltd				1/	/1
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0	5 10	B 15		-	oth In 25	cremen 30	1 t 35	40 4	45	50
0-0.10	0			0.00	l —		=	1			+	+	+		Ŧ
0-0.20 0-0.30 0-0.40	1			-											+
0-0.50 0-0.60	2 3 3 3			0.50											
0-0.70 0-0.80 0-0.90	3			-											
0-0.90 0-1.00 0-1.10	4 4 3			1.00											_
0-1.20 0-1.30	443222222222222222222222222222222222222			-											_
0-1.40 0-1.50 0-1.60	2 2 2			1.50											+
0-1.70 0-1.80	1			- 1.50											+
)-1.90)-2.00				-											t
)-2.10)-2.20)-2.30	1 0 1			2.00]
)-2.40)-2.50	0				(_		+
)-2.60)-2.70)-2.80	1			2.50	$ \downarrow -$										
)-2.80)-2.90)-3.00	2 2 2 3 3 2 2 2 2 2 2 2 2 3 2 3 4			-	++										
)-3.10)-3.20	3			3.00											
)-3.30	2			-											
0-3.50 0-3.60 0-3.70	3			3.50											
0-3.80 0-3.90	3 4			-	$ \rightarrow$										_
)-4.00)-4.10)-4.20	4 2 2 3			4.00	$\mid\mid$							-			
0-4.20 0-4.30 0-4.40				-	$ \rightarrow$										
0-4.50 0-4.60	3 3 8 7 7			4.50		$\overline{}$									
)-4.70)-4.80)-4.90				-											
0-5.00 0-5.10	6 4 3			5.00											_
0-5.20 0-5.30	4 4			-											_
0-5.40 0-5.50 0-5.60	5			 5.50											-
0-5.70 0-5.80	555														
0-5.90 0-6.00 0-6.10	4 5 5 5 5 6 7 5 5 6 7 7			 6.00		$\mathbf{\Sigma}$									
)-6.20)-6.30	5 6														
0-6.40 0-6.50	77														_
)-6.60)-6.70)-6.80	8 8 9			6.50		$\left \cdot \right\rangle \left \cdot \right\rangle$									_
)-6.90)-7.00	10			-											
0-7.10 0-7.20	9 9 9 10			7.00											+
0-7.30 0-7.40 0-7.50	14 21			-			$ \rightarrow $		_						
0-7.60 0-7.70	24			7.50					\geq						
0-7.80 0-7.82	21 35 50			-								-			_
emarks				8.00									Scale (approx)	Logg By	je
													1:40	n/	/a
														I '''	J,

	IAN FAI ASSOCI		Ground	_evel (mOD)		n Hall S	Site - B	roughto	n					Prob Num DP	
Dynamic Pr	obe					Assem	ibly Go	overnme	ent					Num 402	
		Location	Dates		Enginee	er								Shee	₽t
			14/0	1/2008	Opus I	nternat	ional C	Consulta	ants (UI	<) Ltd				1/	/1
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)						-	cremen				
00-0.10	0			0.00		5 1	0	15	20	25	30	35	40	45 	5
10-0.20 20-0.30	1 2 2			-	$ \rightarrow $							_			_
30-0.40 40-0.50	1			-											_
50-0.60 60-0.70	1 2			0.50	$ \rightarrow $										_
70-0.80 30-0.90 90-1.00	2 1 2			-	$ \leftarrow$										_
0-1.10 00-1.10 10-1.20	1			1.00	$ \leftarrow$										_
20-1.30	2 3 3			-	$ \rightarrow $										_
40-1.50 50-1.60	2 1			1.50											_
50-1.70 70-1.80	1														-
0-1.90	1 1 2			2.00											
0-2.10 0-2.20 20-2.30	1														
0-2.40	2			-				ļ					_		
0-2.60 0-2.70	1			2.50								_			
70-2.80 80-2.90	3											_			_
0-3.00	6 3			3.00								_			_
0-3.20 20-3.30 30-3.40	3			-	$ \rightarrow $										
40-3.50 50-3.60	ଓ ମ ଓ ସ ସ ସ ସ ସ ସ ସ ସ ସ														-
60-3.70 70-3.80	2														-
30-3.90 90-4.00	2 2			-											
00-4.10	2			4.00											_
20-4.30 30-4.40 40-4.50	3			-											
50-4.60 50-4.70	2			4.50											
70-4.80 30-4.90	3 4			-									_		_
90-5.00 00-5.10	5 5			5.00											_
10-5.20 20-5.30	5											_			_
30-5.40 40-5.50 50-5.60	555			5.50		2									_
0-5.70 0-5.80	5			- 0.00											-
80-5.90 90-6.00	7 7			-											-
0-6.10	777			6.00											-
20-6.30 30-6.40 40-6.50	7			-											
0-6.60 0-6.70	6			6.50											
'0-6.80 80-6.90	6 7			- 		\mathbf{I}									
0-7.00 0-7.10	7 6			7.00		$\left \right\rangle$									
0-7.20	7			-									_		
30-7.40 40-7.50 50-7.60	8 8			7.50					-		_			<u> </u>	
50-7.70 50-7.80 70-7.80	332234555565557777777666667767788889280								\vdash					<u> </u>	_
30-7.90 90-7.97	28 50									<u> </u>		-			_
emarks			F	8.00									Scale (approx)	Logg By	Je
													1:40	n/	/=
													Figure		J

	IAN FAI ASSOCI				Site Warrer	n Hall Sit	e - Bro	ughton					Prob Num DP	
lethod Dynamic Pi	robe	Cone Dimensions	Ground L	evel (mOD)		Assemb	ly Gove	ernment					Job Numl 402	
		Location	Dates	1/2008	Enginee Opus li		nal Co	nsultants	(UK) Lte	d			Shee 1/	
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)				lows for			nt			
.00-0.10	0		(mod)	(m) — 0.00	0 5	10	15	20	25	30	35	40 4	45	5
10-0.20 20-0.30 30-0.40	0 2 2				$ \uparrow \uparrow$									_
40-0.50 50-0.60 60-0.70	2 2 2 2 2 2			- 0.50 -										_
70-0.80 30-0.90 90-1.00	1 0 0													
00-1.10 10-1.20 20-1.30	0 0 0			— 1.00 -										-
30-1.40 40-1.50 50-1.60	0 0 0			- - - 1.50										_
60-1.70 70-1.80 80-1.90	0			-										
90-2.00 00-2.10 10-2.20	1 0 1			2.00	$ \leftarrow$									
20-2.30 30-2.40 40-2.50	1 1													
50-2.60 60-2.70 70-2.80	1 1 2			— 2.50 - -										
30-2.90 90-3.00 00-3.10	3 3 2			- - 3.00										-
10-3.20 20-3.30 30-3.40	2 2 2			_										
40-3.50 50-3.60 60-3.70	2 3 3 2 2 2 2 2 2 3			- 3.50 -										_
70-3.80 80-3.90 90-4.00	4 5 2 2 2 3			- 										_
00-4.10 10-4.20 20-4.30				— 4.00 - -										_
30-4.40 40-4.50 50-4.60	3 4 3			- - - 4.50	$ \rightarrow $									_
60-4.70 70-4.80 80-4.90	4 4 20 21 21			-			_							_
90-5.00 00-5.10 10-5.20	21 21 21			5.00 				-						-
20-5.30 30-5.33	21 23 50			- - 										-
				— 5.50 - -										_
				6.00										_
														_
				6.50 										_
				- 7.00							_			_
				7.00 										_
				- - - 7.50										
														_
emarks				8.00								Scale (approx)	Logg By	
												1:40	n/	
												Figure		

	IAN FAI ASSOCI	ATES				n Hall Site	e - Brou	ughton					Probe Numl	
lethod Dynamic Pi	robe	Cone Dimensions	Ground	Level (mOD)		Assembl	ly Gove	ernment					Job Numl 402	
		Location	Dates	01/2008	Enginee Opus li		nal Cor	nsultants	(UK) Ltc	ł			Shee 1/	
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0 5	5 10		lows for 20	Depth In 25	ncremer 30		40	45	5
.00-0.10	0 0			0.00					25	30		40 4	+5	+
.20-0.30 .30-0.40 .40-0.50	1													-
50-0.60 60-0.70	2 2 2 2			0.50										_
70-0.80 80-0.90 90-1.00	1 1 1													-
00-1.10 10-1.20 20-1.30	1 2 2			1.00										
30-1.40 40-1.50	2 2 3 2 2 1													_
50-1.60 60-1.70 70-1.80	2 1 2			1.50										
80-1.90 90-2.00 00-2.10	2 3 3			2.00										
10-2.20 20-2.30 30-2.40	3 3 2													_
40-2.50 50-2.60	2			2.50										
60-2.70 70-2.80 80-2.90	2 3 3													
90-3.00 00-3.10 10-3.20	19 46 28			3.00									-	-
20-3.30 30-3.40 40-3.50	46 28 43 44 32			-								\sum		-
50-3.60 60-3.70	28			3.50						\langle				_
70-3.80 80-3.82	32 43 50													
				4.00										
				4.50										_
				- 4.50										-
				5.00										
				5.50										-
														_
				6.00										_
				6.50 										_
				- 7.00										
				7.00										_
				7.50						_				
											-			-
				8.00							,			_
Remarks											; ()	Scale approx)	Logg By	e
												1:40	n/	a
												Figure	No. 74.DP1	

P	IAN FAI ASSOCI	R M E R A T E S			Site Warre	en Hall S	Site - Bro	oughto	'n					Probe Numl DP	
lethod Dynamic Pr	robe	Cone Dimensions	Ground I	Level (mOD)		n Assem	nbly Gov	/ernme	ent					Job Numl 402	
		Location	Dates		Engine	er								Shee	et
			17/0	01/2008	Opus	Internat	tional Co	onsulta	ants (Ul	K) Ltd				1/	'1
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)		0					creme		0.4		
.00-0.10	0			0.00	0	3 (6 9		12	15	18	21	24	27	30
.10-0.20 .20-0.30 .30-0.40															-
40-0.50 50-0.60	2			0.50											+
60-0.70 70-0.80 80-0.90	1 2 1			-											
90-1.00 00-1.10	1			1.00											_
10-1.20 20-1.30 30-1.40	3 2 3				$\mid \mid \rightarrow$	>									_
40-1.50 50-1.60	3 2 3 3 4 4 4 4			1.50											+
60-1.70 70-1.80 80-1.90	4														
90-2.00 00-2.10	6 7 10			2.00				_							
10-2.20 20-2.30 30-2.40	15 23 25											+	\leftarrow		_
				2.50						<u> </u>					-
				-											_
				3.00											_
										-					_
				3.50											_
				-											
				4.00											_
				-											_
				4.50											_
				- 											_
				5.00											_
										-					-
				5.50											_
				-											_
				6.00						-					_
				- 											-
				6.50											
												_			_
				7.00											+
				-						-					+
				7.50											
										-					+
Remarks				8.00						<u> </u>	_		Scale (approx)	Logg By	_ je
													1:40	n/a	
													Figure		a

	IAN FAH ASSOCI				Site Warr	en Hall	Site - B	roughte	on					Prob Num DP	
lethod Dynamic Pr	obe	Cone Dimensions	Ground	Level (mOD)		h Asser	nbly Go	overnm	ent					Job Num 402	
		Location	Dates	1/2008	Engine		tional (`onoult	onto (II	K) I td				Shee 1/	et /2
Denth	Blows for			01/2008	Opus	Interna	alional C		ants (O			nt			
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0	5	10			25	30	35	40	45	5
.00-0.10 .10-0.20 .20-0.30	0 1 2			0.00											
30-0.40 40-0.50	2 3 2			-											_
50-0.60 50-0.70	2			0.50											
70-0.80	i 1			-											
30-0.90 90-1.00				-											
)0-1.10 10-1.20	1			1.00	7										
20-1.30 30-1.40	0 1			-		1									-
40-1.50 50-1.60	1 2			1.50											_
60-1.70 70-1.80	2 2 2									+					-
0-1.90	1			- 	+	+			+	+	_		_	-	-
0-2.00 0-2.10 0-2.20	2 2 1			2.00	+				+		_	_			_
20-2.30 20-2.40				<u>-</u>	$ \rightarrow$					+	_				_
0-2.50	2 2 1			-	$\parallel \leftarrow$							_			_
0-2.60 0-2.70	5 7 6			2.50		\rightarrow						_			
0-2.80 0-2.90	6					<u> (</u>						_			
0-3.00	6 3			3.00		\downarrow				_		_		<u> </u>	
0-3.20 20-3.30	3 3			 		_					_	_			_
0-3.40	3 3 3 2 3 3 3 3 3 3 3			-	$ \downarrow\downarrow$						_		_		
50-3.60 50-3.70	3			3.50											
70-3.80 30-3.90	6 6 7			-											_
90-3.90 90-4.00 90-4.10	7			4.00		\triangleright									_
10-4.10 10-4.20 20-4.30	5 5 5			4.00											_
30-4.40	5			-											
40-4.50 50-4.60	6 6 7			4.50		R									_
60-4.70 70-4.80	6			-											_
30-4.90 90-5.00	6 7 3 5 7 6 7					\square				1					_
00-5.10 10-5.20	3 5			5.00 					1	+					-
20-5.30 30-5.40	7 6					\downarrow		-		-					-
40-5.50 50-5.60	7 6			5.50		$\downarrow \rightarrow$				-	_		_		-
0-5.70 0-5.80	8 8 8					\uparrow		-		-		-		-	-
80-5.90 90-6.00	8 10			- -		$+ \downarrow$	\downarrow			-	_				_
0-6.10	10 8			6.00		+-/				+					_
20-6.30 80-6.40	9 8 7			<u> </u>		\mapsto				+	_	_		-	_
0-6.50	7			6.50		$+ \leftarrow$						_			
0-6.60	8 7					+		<u> </u>				_			
0-6.80	8 10					\vdash	\leftarrow					_			
0-7.00	15 9 8			7.00			\geq	`				_			_
0-7.20	10			-		+	$\begin{pmatrix} & & \\ & & \end{pmatrix}$				_	_			
80-7.40 10-7.50	11 10						2		-			_			
50-7.60 50-7.70	11 12			7.50 			$ \rangle$					_			
70-7.80 30-7.90	12 15										_	_			
90-8.00	14			8.00									_		
lemarks													Scale (approx)	Logg By	g
													1:40	n/	1/2
													1	No.	

	IAN FAR ASSOCI	ATES	0			n Hall Sit	.е - ы	ougnic					Probe Numi	
lethod Dynamic Pi	robe	Cone Dimensions	Ground I	Level (mOD)		Assemb	ly Go	vernme	ent				Job Numl 402	
		Location	Dates 16/0)1/2008	Enginee Opus li	r nternatio	onal C	onsulta	ants (Ul	<) Ltd			Shee 2/2	
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0 5	10				pth Inc 25	it 35	40 4	45	5
.00-8.10 .10-8.20 .20-8.30	12 19 26			8.00			<							+
.20-8.30 .30-8.40 .40-8.50 .50-8.60	26			 8.50						\triangleright				_
.60-8.70 .70-8.80 .80-8.86	30 26 23 35 50								<		-			_
00-0.00	30			9.00									<u> </u>	
														_
				9.50										_
				10.00										
														_
				10.50										
				 11.00										-
				11.50										_
														-
				12.00										_
				12.50										-
				-										
				13.00 										
				13.50									<u> </u>	
				-										_
				14.00										
				 14.50										_
														-
				15.00									<u> </u>	
														_
				15.50 										_
				16.00										_
Remarks												Scale (approx)	Logg By	je
												1:40 Figure	n/s	'a

P	IAN FAI ASSOCI	R M E R A T E S			Site Warren	Hall Site	- Brought	ton					Probe Numi DP	
lethod Dynamic Pr	robe	Cone Dimensions	Ground I	Level (mOD)		Assembly	Governm	nent					Job Numl 402	
		Location	Dates	01/2008	Engineer Opus Ir		al Consul	tants (U	K) Ltd				Shee 1/	
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0 3	6	Blow 9	s for De	epth In 15	icremer		24	27	30
.00-0.10	0 0			0.00			Ť							ŧ
.20-0.30 .30-0.40 .40-0.50	0 0 1			-										
50-0.60 60-0.70	1			0.50										_
70-0.80 80-0.90 90-1.00	3 6 10						$ \rightarrow $							_
00-1.10 10-1.20	10 25			1.00							-	-		-
				-										
				1.50										-
				 2.00										-
				-										
				2.50										-
				-										-
				3.00							_			_
				3.50										-
				4.00										_
				-										-
				4.50										
				4.50										-
				5.00							-			
				5.50										-
				5.50										
				6.50										_
				0.00 						_				-
				7.00										-
														_
				7.50										
														-
				8.00										
emarks												Scale (approx)	Logg By	e
												1:40	n/: No.	а

P	IAN FAI ASSOCI	R M E R A T E S			Site Warre	en Hall S	Site - B	roughtc	n					Probe Numb DP	
/lethod Dynamic P	robe	Cone Dimensions	Ground L	_evel (mOD)		n Assen	nbly Go	vernme	ent					Job Numi 402	
		Location	Dates		Engine	er								Shee	
			18/0	1/2008	Opus	Interna	tional C	Consulta	ants (Uł	<) Ltd				1/	1
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0	0		Blows					0.4		_
.00-0.10	0			0.00	0	3	6	9	12	15	18	21	24	27	3
10-0.20 20-0.30	0			-									_		_
30-0.40 40-0.50 50-0.60	0 1 1			 0.50											_
60-0.80 60-0.70 70-0.80	1														1
80-0.90 90-1.00	32			 1.00											1
00-1.10 10-1.20	2 2			1.00											
20-1.30	1 2			-	\square										
40-1.50 50-1.60 60-1.70				1.50											
70-1.80 30-1.90	2 3 2 2 2 1 2 2 2 2 4 5 4 3 8 20			-		\searrow						-		<u> </u>	_
90-2.00 00-2.10	4 3			2.00		$\left \right $									_
10-2.20 20-2.30 30-2.40	8 20 14			-							\geq				-
40-2.50 50-2.60	7 12 25			2.50			\leq	\leq							
60-2.70	25			-											
				3.00											
				-											
				3.50										<u> </u>	_
				-											-
				4.00											_
				-											-
				4.50											-
				4.50											-
				5.00											
														<u> </u>	
				5.50											_
				-											-
				6.00											-
				- - - 6.50											-
				6.50											
				-											_
				7.00										<u> </u>	
				-											_
												-			-
												-			
												-	-		
emarks	1	<u> </u>	F	8.00		<u> </u>	<u> </u>		<u> </u>		<u> </u>	+	Scale (approx)	Logg By	e
													1:40	n/a	а
													Figure		_
													402	74.DP1	1

P	IAN FAI ASSOCI	R M E R A T E S			Site Warre	n Hall Sit	te - Brougl	nton					Probe Numl DP	
lethod Dynamic Pr	robe	Cone Dimensions	Ground I	Level (mOD)		n Assemb	ly Govern	ment					Job Numl 402	
		Location	Dates		Engine	er							Shee	
			18/0	01/2008	Opus	Internatio	onal Consi	ultants (L	JK) Ltd				1/	1
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0	36	Blov 9	vs for D				04	27	2
.00-0.10	0			0.00		3 6	9	12	15	18	21	24		3
10-0.20 20-0.30 30-0.40	0 0 1			-	$\left \right $				_					-
40-0.50 50-0.60	1 2			0.50										-
60-0.70 70-0.80 80-0.90	2 2 1 2 2 4 5 4 6 4 4 6 9			-	$\left \right $									
90-1.00 00-1.10	2 4			1.00		$\left \right\rangle$			_					
10-1.20 20-1.30 30-1.40	5 4 6			-										-
40-1.50 50-1.60	4 4			1.50										
60-1.70 0-1.80 80-1.90	9 15			-										_
0-2.00 0-2.10 0-2.20	15 20 21 25			 2.00					_					
0-2.20	25								+					-
				2.50										-
				-										_
				 3.00					_					_
				-					_		_			
				3.50										
														_
				4.00										_
				-										-
				4.50										-
														_
				5.00					_					_
														-
				5.50										-
				-										_
				6.00										_
				-										-
				6.50										
				-										_
				7.00						_				
				-					+					
				7.50										-
				-										_
				8.00										_
emarks												Scale (approx)	Logg By	e
												1:40	n/:	a
												Figure		

Figure A2.4

Trial Pit Records

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		IAN FAR ASSOCIA			Ground	Level (mOD)	Warren Hall Site - Brough	ton	Numb TP0
Depth Sample / Tests View Field Records Introduction in the period in the perio		linethed			around	20101 (1102)		nent	Numb 4027
20 33 34 Gess over brown, dayey, sandy TOPSOL with some plant immediate 333 Gess over brown, dayey, sandy TOPSOL with some plant immediate 34 30 94 95 Gess over brown, dayey, sandy TOPSOL with some plant immediate 34 A 30 95 Gess over brown, dayey, sandy TOPSOL with some plant immediate 34 A A 30 95 Gess over brown, dayey, sandy TOPSOL with some plant immediate A A 30 95 Gess over brown, dayey, sandy TOPSOL with some plant immediate A A 30 95 Gess over brown, daye, sandy TOPSOL with some plant immediate A A 10 D1 E Gess over brown, daye, sandy TOPSOL with some plant immediate A 110 D1 E Gess over brown, dayet and famole D0 A 800 D13 E Gess over brown, slightly sandy CLAY with occasional pockets Fm, brown, slightly sandy CLAY with occasional pockets 6130 Fm, brown, slightly gavetly CLAY with occasional pockets of silv and fample a subangler to gavet borne and some Fm 6230 Fm, brown, slightly gavetly CLAY with occasional pockets of silv and fample a subangler gavet borne and a dom			Locatio	n	Dates 16	6/01/2008		ltants (UK) Ltd	Sheet 1/1
20 30 30 30 40 30 40 30 30 40 30 30 40 30 30 40 30 30 40 40 50 30 30 40 40 50 50 50 50 50 50 50 50 50 50 50 50 50	Depth (m)	Sample / Tests	Water Depth (m)	Field Rec	ords Level (mOD)	Depth (m) (Thickness)	D	Description	Legend
Seepage at 2.10m. Slight spalling between 2.50m and 3.00m.	20 20 30 30 30 30 30 40 .10 .10 .80 .80	D2 B1 J6 D5 B4 D8 B7 D9 D11 B10 D13 B12 D15		seepage(1) at 2.1	I0m.	(0.20) 0.20 (1.90) (1.90) (1.90) (0.70) (0.70) (0.70) (1.00) (1.00) (0.20) (0.20)	Grass over brown, clayey material. Firm, red brown, occasion slightly gravelly CLAY with rounded to angular, fine to sandstone. At 1.40m: occasional po Brown, very silty SAND. Firm, brown, slightly sand of silt. Firm, blue brown, sandy, s occasional pockets of silty subrounded, fine and med quartz.	ally mottled grey orange, sand n occasional rootlets. Gravel is o coarse including siltstone and ockets of silty sand (sample D9) y CLAY with occasional pocket slightly gravelly CLAY with / sand. Gravel is subangular to	/ · · · · · · · · · · · · · · · · · · ·
	Plan .					•••	Seepage at 2.10m.)m and 3 00m	
						•••	Sagne optiming bolwooth 2.00	and 0.0011.	
	·		•						
	·		•						
Scale (approx) Logged By Figure No.	•		•			•••			
	•	· ·	•	· ·			Scale (approx)	Logged By F	gure No.

	IAN FAR ASSOCIA					Site Warren Hall Site - Brough	ton	Trial P Numbe TP01
xcavatior CB 3CX	n Method	Dimens 3.50m	s ions x 0.70m x 4.40m	Ground	Level (mOD)	Client Welsh Assembly Governn	nent	Job Numbo 4027
		Locatio	on	Dates 18	3/01/2008	Engineer Opus International Consul	Itants (UK) Ltd	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend
					(0.30)	Soft, dark brown TOPSOI	L with some rootlets.	
.30 .30	D2 B1				0.30 (0.20) 0.50 (0.40) 0.90	Soft in places firm, dark re is angular to subangular, f and mudstone.	ed brown, gravelly CLAY. Gra ine to coarse including siltsto	vel <u></u>
80 80	D4 B3				0.90	Firm, light red , dark grey, Gravel is angular to subar siltstone, quartz and muds	mottled brown, gravelly CLA ngular, fine to coarse including	/
50	D6				(1.00)		ed, brown, mottled blue grey of quartz and sandstone and	
50	B5		Water strike(1) at 1.80m.		E 1.00	Dark red, brown, gravelly	CLAY with some cobbles of ar to subangular, fine to coars one and coal.	e
50	D8		Water strike(2) at 2.50m.			including siltstone, mudsto	one and coal.	
50	B7							
					(2.50)			
50 50	D10 B9							
					4.40			
						Complete at 4.40m	ossible rockhead encountere	<u>a).</u>
						p		
lan .		·				Remarks Groundwater located at 1.80	0m and 2.50m.	
-						Trial pit remained stable thro Trial pit terminated at 4.40m	oughout excavation. I due to obstruction - possible	rockhead.
						Scalo (approx)	Loggod By	Figure Ne
					5	Scale (approx) 1:50	Logged By MV	Figure No. 40274.TP012

	IAN FAR ASSOCIA					Warren Hall Site - Broughton	Number
Excavation CB 3CX	Method	Dimension 2.70m x 0.	s 60m x 3.00m	Ground	Level (mOD)	Client Welsh Assembly Government	Job Numbe 40274
		Location		Dates 16	6/01/2008	Engineer Opus International Consultants (UK) Ltd	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
20 20 20 20 30 30 30 90 90 20 20 20 20 20 00 00	J3 D2 B1 B4 D5 J6 B8 B7 D10 B9 B11 D12 B13 D14 D16 B15					Grass over brown, very clayey, sandy TOPSOIL with some nodules of clay and some rootlets. Soft in places firm, orange brown, sandy, slightly gravelly CLAY. Gravel is rounded to subrounded, fine and medium including sandstone and quartz. Firm in places stiff, red brown, sandy, slightly gravelly CLAY. Gravel is rounded to subrounded, fine to coarse including sandstone and siltstone. Red brown SANDSTONE, recovered as very clayey sand and subangular to subrounded, fine to coarse gravel. Light grey SANDSTONE, recovered as sand and angular to subrounded, fine to coarse gravel. Red brown SANDSTONE, recovered as sandy, angular to subangular, fine to coarse gravel. Between 2.50m and 3.00m: slow progress (20 minutes). Complete at 3.00m	
Plan .	· ·				· · ·	Remarks	
						Trial pit remained dry throughout excavation. Slight spalling between 1.20m and 2.00m.	
	· ·	•			· ·		
•	• •	•		•	· · ·	Scale (approx) Logged By Figure	re No.

	ASSOCIA					Warren Hall Site - Broughton		Trial P Numbe TP0
Excavation	wethod	Dimens 3.00m	s ions x 0.60m x 3.50m	Ground	Level (mOD)	Client Welsh Assembly Governn	nent	Job Numbe 4027
		Locatio	n	Dates 16	6/01/2008	Engineer Opus International Consultants (UK) Ltd		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend
.20 .20 .20 .30 .30 .30 .90 .90 .50 .50	J3 D2 B1 J6 D5 B4 D8 B7 D10 B9 D12 B11 B13 D14		trickle(1) at 2.30m.		(Interness) (Interness) (0.30) (0.60) (1.00) (0.40) (0.6	Grass over MADE GROUI slightly gravelly TOPSOIL. subrounded, fine to coarse MADE GROUND: Firm in brown, sandy, slightly grav to subrounded, fine to coa and coal. Firm, dark blue, grey, sligh Dark blue SILTSTONE/MU gravelly CLAY. Gravel is is medium including siltstone Very weak, dark grey blue clayey sand and angular to tabular gravel.	e of sandstone. places stiff, mottled orange velly CLAY. Gravel is subangul rse including sandstone, siltsto ntly sandy CLAY. JDSTONE, recovered as sandy angular to subangular. fine and	
Plan .					•••	Remarks Groundwater located at 2.30)m.	
		•				Slight spalling between 1.50	im and 2.50m.	
•								
•	· ·	•	· · ·		· ·			

CB 3CX 3.00m x 0.00m x 0.00m Weigh Assembly Government Num Location Dates Engineer Opention Sine	Excavation	ASSOCIA	Dimension	is.	Ground	Level (mOD)	Warren Hall Site - Brought		ТРО Јор
Desk Image: Control in the interview of the intervi	ICB 3CX			-	Cround	Level (mob)		nent	Numbe 4027
20 0.20 0			Location			6/01/2008		tants (UK) Ltd	Sheet 1/1
20 D2 0.20 TOPSOIL with rotation. Give is including autocunded. 1 20 B1 B1 B1 B1 1 30 B2 B1 B1 B1 B1 B1 30 B2 B1	Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend
. .	0.20 0.20 0.20 0.30 1.30 1.30 2.30 2.30 2.40 2.40 3.40 3.40 3.40 3.40 3.40 3.40 3.40	J3 B1 B4 D5 J6 J9 D8 B7 B7 B10 D11 J12 B13 D14 D16		· · · · ·			TOPSOIL with rootlets. G fine to coarse of sandstom Firm, mottled orange, grey CLAY. Gravel is subangu medium including sandsto made ground). Below 2.20m: silty and re Red brown, very clayey S/ to coarse GRAVEL with sa Gravel is subangular to ro sandstone, siltstone and q Complete at 4.00m Complete at 4.00m	avel is rounded to subround e. , brown, sandy, slightly gravel lar to subrounded, fine and ne, siltstone and coal (possite ed brown. AND and angular to rounded, me nodules of clay. Gravel ltstone (possible made group ndy, slightly gravelly CLAY. unded, fine to coarse includir uartz.	fine
. .									
. . <th>•</th> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	•		•						
					-	•••			

	IAN FAR ASSOCIA	TES				Warren Hall Site - Broughton	Number TP05
Excavation CB 3CX	Method	Dimension 3.00m x 0.	is 60m x 4.00m	Ground	Level (mOD)	Client Welsh Assembly Government	Job Numbe 40274
		Location		Dates	5/01/2008	Engineer Opus International Consultants (UK) Ltd	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
20 20 20 30 30 30 30 30 30 30 30 80 80 270 220	J3 D2 B1 J6 D5 B4 J9 D8 B7 D11 B10 D13 B12 D15 B14					Grass over brown, clayey, sandy, slightly gravelly TOPSOIL with occasional plant material. Gravel is rounded to angular, fine and medium including siltstone and sandstone Orange brown, clayey SAND and rounded to subrounded, fine to coarse GRAVEL with occasional nodules of clay. Gravel includes sandstone and quartz (possible made ground). Below 1.30m: some nodules of clay. At 1.80m: occasional cobbles. Stiff, blue grey, slightly sandy, slightly gravelly CLAY with occasional cobbles. Gravel is subrounded to subangular, fine to coarse including sandstone and quartz. At 2.30m: some cobbles of sandstone and boulders of sandstone (upto 0.50m). Stiff, light orange, brown, sandy, slightly gravelly SILT with occasional cobbles. Gravel is subrounded to angular, fine and medium of sandstone. Firm in places stiff, blue grey, slightly sandy, slightly gravelly CLAY. Gravel is subrounded to subangular, fine and medium of sandstone.	
Plan .					•••	Remarks Trial pit remained dry throughout excavation.	
						Slight spalling between 1.00m and 3.00m.	
						Scale (approx) Logged By Figu	re No.

_	IAN FAR ASSOCIA	1			1	Site Warren Hall Site - Broughton	Trial Pi Numbe
xcavation CB 3CX	Method	Dimens 3.40m	s ions x 0.70m x 1.40m	Ground	Level (mOD)	Client Welsh Assembly Government	Job Numbe 40274
		Locatio	n	Dates	3/01/2008	Engineer Opus International Consultants (UK) Ltd	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
.50 .50 .40	D2 B1 D4 B3		slight seepage(1) at 1.00m.		(0.20) 0.20 (0.80) (0.80) (0.40) (0.40) (0.40)	Soft, dark brown TOPSOIL with rootlets. Soft in places firm, red brown, sandy, gravelly CLAY with some cobbles. Gravel is angular to subangular, fine to coarse including siltstone and sandstone. Firm in places stiff, light blue grey, gravelly SILT with some cobbles. Gravel is angular to subangular, fine to coarse of siltstone. At 1.40m: obstruction (rockhead encountered).	
						Complete at 1.40m	
Plan .				·	• •	Remarks At 1.00m: slight seepage (broken land drain). Trial pit remained stable throughout excavation. Trial pit terminated at 1.40m due to obstruction.	
•		•				Trial pit terminated at 1.40m due to obstruction.	
•		•			 		re No.)274.TP06

	IAN FAR ASSOCIA	MER TES		1			Site Warren Hall Site - Brought	ton	Nur	al Pit mbei P07
Excavation I ICB 3CX	Method	Dimens 3.50m	s ions x 0.70m x 3.00m	Gr	ound L	.evel (mOD)	Client Welsh Assembly Governm	nent		o mbe i 0274
		Locatio	n	Da	i tes 18/0	01/2008	Engineer Opus International Consul	tants (UK) Ltd	She	eet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Rec	ords (m	evel nOD)	Depth (m) (Thickness)	D	escription	Lege	end
						(0.30) 0.30	Soft, dark brown, sandy, g	ravelly TOPSOIL with rootlets		
80	D2				E	(0.60)	Soft, light red brown, sand angular to subangular, fine sandstone and mudstone.	y, gravelly SILT. Gravel is a to coarse including siltstone,	× × × × × × × × × × × × × × × × × × ×	× × × × × ×
30 30	B1		slight seepage(1)	at	F	0.90	Firm, becoming stiff, dark Gravel is angular to subro siltstone, sandstone and n	red, brown, sandy, gravelly Sl unded, fine to coarse includin nudstone.	LT. x x x x x x x x x x x x x x x x x x x	× × × × × ×
50 50 50	D4 B3 D6		siigni seepage(i, 1.30m.	a		(1.50)	Firm in places stiff, dark re Gravel is angular to suban	ed, brown, sandy, gravelly SIL igular, fine to coarse including		× × × × × × × × × × × × ×
50 00 00	B5 B7 D8						siltstone, sandstone and n At 3.00m: obstruction (rc Complete at 3.00m			× 2× 2× 5×6×4
'lan _	· · · · · · · · · · · · · · · · · · ·	· · ·	· · · · · ·	· · · · · · · · · · · · · · · · · · ·		•	Remarks At 1.30m: slight seepage. Trial pit remained stable thro Trial pit terminated at 3.00m	bughout excavation. due to obstruction.		
							Scale (approx)	Logged By	Figure No.	

	IAN FAR ASSOCIA	TES				Warren Hall Site - Broughton	Numbe
Excavation	Method	Dimension 3.00m x 0.	is 60m x 3.50m	Ground	Level (mOD)	Client Welsh Assembly Government	Job Numbe 40274
		Location		Dates 15	6/01/2008	Engineer Opus International Consultants (UK) Ltd	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
0.20 0.20 0.40 0.40 0.40 2.0 2.00 2.00 2.00 2.40 3.40 3.40 3.40	J3 D2 B1 J6 D5 B4 J9 D8 B7 D11 B10 D13 B12 D15 B14					 MADE GROUND: Brown, clayey, sandy, gravelly TOPSOIL with some plant material. Gravel is subrounded to subangular, fine to coarse including sandstone and slag. MADE GROUND: Orange brown, very clayey, slightly gravelly SAND with some nodules of clay and silt. Gravel is subrounded to subangular, fine and medium including ash and sandstone. Soft in places firm, orange brown, sandy, slightly gravelly CLAY. Gravel is angular to subrounded, fine and medium including chert, filint, siltstone and sandstone. At 1.90m: occasional nodules of stiff clay. Firm, red brown, sandy, slightly gravelly CLAY. Gravel is rounded to subrounded, fine to coarse including sandstone, siltstone and coal. Below 3.00m: very sandy. Red, purple, brown SILTSTONE, recovered as slightly clayey sand and angular to subangular, fine to coarse gravel. At 3.50m: light grey. Complete at 3.50m 	
Plan .		·		• •	•••	Remarks Trial pit remained dry and stable throughout excavation.	
		•					
•							
						Scale (approx) Logged By Figur	e No.

	ASSOCIA				<u> </u>	Warren Hall Site - Brough	ton	Numb TP0
Excavation CB 3CX	Method	Dimension 3.50m x 0.	is .70m x 3.50m	Ground	Level (mOD)	Client Welsh Assembly Governn	nent	Job Numb 4027
		Location		Dates	3/01/2008	Engineer Opus International Consul	tants (UK) Ltd	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend
					(0.30)	Soft, dark brown, sandy, g	ravelly TOPSOIL with rootlets	
.50 .50	D2 B1				0.30	Soft in places firm, light re Gravel is angular to subar siltstone, sandstone and n	d, brown, sandy, gravelly SILT gular, fine to coarse including nudstone.	
10 10	D4 B3				1.10	Firm, dark red, brown, sar small fragments of coal.	dy, gravelly SILT with occasio	nal *******
00 00	D6 B5							
00 00	D8 B7				3.00	Red brown, clayey SAND.		4 × • • × •
						Complete at 3.50m		
'lan .					• •	Remarks Groundwater located betwe Slight spalling between 0.00	en 1.00m and 1.10m.	
						Slight spalling between 0.00	Im and 3.00m.	
•			· · ·	· ·	· ·			
		•		•	· · ·	Scale (approx)	Logged By F	igure No.
					· ·	····· ·····/		3

	IAN FAR ASSOCIA	TES			1	Warren Hall Site - Broughton	Number TP10
CB 3CX	Method	Dimens 3.30m	ions x 0.70m x 4.50m	Ground	Level (mOD)	Client Welsh Assembly Government	Job Numbe 40274
		Locatio	n	Dates 18	3/01/2008	Engineer Opus International Consultants (UK) Ltd	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
.50 .50 .90 .90 .50 .50 .50 .50 .50	D2 B1 J5 D4 B3 D7 B6 D9 B8 D11 B10 B12 D13		Water strike(1) at 2.50m.		(0.50) (0.40) (0.40) (0.60)	Soft, dark brown, slightly gravelly TOPSOIL with rootlets. Soft in places firm, dark grey, brown, sandy, gravelly CLAY. Gravel is angular to subangular, fine to coarse of mudstone. Firm in places stiff, red, orange, brown, mottled blue grey, gravelly CLAY. Gravel is angular to subangular, fine to coarse including siltstone, sandstone and mudstone. Red brown, sandy SILT with fragments of coal and rootlets. Below 2.60m: with nodules of stiff, brown clay. Stiff, dark red, blue, brown, gravelly CLAY with some cobbles of mudstone. Gravel is angular to subangular, fine to coarse of siltstone. Complete at 4.50m	
Plan .						Remarks	
						Groundwater located at 2.50m. Trial pit remained stable throughout excavation.	
					<u>.</u>	Scale (approx) Logged By Figu	re No.

	IAN FAR ASSOCIA	TES			1	Warren Hall Site - Broughton	Numbe TP11
Excavation JCB 3CX	Method	Dimension 3.40m x 0.	is .70m x 4.00m	Ground	Level (mOD)	Client Welsh Assembly Government	Job Numbe 40274
		Location		Dates 18	8/01/2008	Engineer Opus International Consultants (UK) Ltd	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
2.00 2.00 3.00 3.00 3.50 4.00	D2 B1 J5 D4 B3 D7 B6 D9 B8 D11 B10 B12 D13				(0.60) (0.40) (0.40) (0.90) (0.90) (0.90) (0.90) (0.90) (0.10) 4.00	Soft, dark brown, slightly gravelly TOPSOIL with rootlets. Soft in places firm, light grey, red brown, gravelly CLAY. Gravel is angular to subangular, fine to coarse including mudstone and coal. Firm, dark red brown, gravelly CLAY. Gravel is angular t subangular, fine to coarse including mudstone and coal. Firm, dark black, blue grey, gravelly CLAY. Gravel is angular to subangular, fine to coarse including siltstone, quartz and mudstone. Stiff, dark red, blue grey, sandy, gravelly CLAY with some cobbles of siltstone. Gravel is angular to subangular, fine to coarse including mudstone and siltstone. Complete at 4.00m	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Plan .					• •	Remarks Trial pit remained dry throughout excavation. Slight spalling between 0.00m and 2.00m.	
						Slight spalling between 0.00m and 2.00m.	
		•					
•							
					s	Scale (approx) Logged By Fi	gure No.

P	IAN FAR ASSOCIA					Site Warren Hall Site - Broughton	Trial Pit Numbe TP12
Excavation ICb 3CX	Method	Dimension 2.70m x 0.0	s 60m x 3.50m	Ground	Level (mOD)	Client Welsh Assembly Government	Job Numbe 40274
		Location		Dates 15	5/01/2008	Engineer Opus International Consultants (UK) Ltd	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
0.20 0.20 0.50 0.50 0.50 0.50 0.50 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.50	D2 J3 B1 B4 D5 J6 D10a D8 B7 B11 D12 B13 D14 B15 D16					MADE GROUND: Brown, very clayey, sandy TOPSOIL with some plant material. MADE GROUND: Firm in places, orange brown, sandy, slightly gravelly CLAY with occasional localised pockets of clayey sand. Gravel is rounded to subangular, fine to coarse including sandstone, siltstone, coal and ash. At 1.50m: pocket of silty sand (sample D10a). Grey, very clayey SAND and angular to subangular, fine to coarse GRAVEL. Gravel includes siltstone and shale. At 2.50m: dark blue, grey with occasional cobbles. Dark blue grey SILTSTONE, recovered as clayey, sandy, angular, fine to coarse, tabular gravel of siltstone. Between 3.00m and 3.50m: slow progress (30 minutes). Complete at 3.50m	
Plan .		·			•••	Trial pit remained dry and stable throughout excavation.	
				•			
•				-			
				-			
· -				•	s		°e No. 274.TP12

	IAN FAR ASSOCIA					Site Warren Hall Site - Broughton	Trial Pit Number TP13
Excavation Cb 3CX	Method	Dimension 2.50m x 0	ns 0.60m x 1.20m	Ground	Level (mOD)	Client Welsh Assembly Government	Job Number 40274
		Location		Dates	5/01/2008	Engineer Opus International Consultants (UK) Ltd	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Record	s Level (mOD)	Depth (M) (Thickness)	Description	Legend
0.20 0.20 0.30 0.30 0.70 0.70	J3 D2 B1 J6 D5 B4 D8 B7					Brown, very clayey, sandy, slightly gravelly TOPSOIL with occasional nodules of clay and occasional plant material. Gravel is subrounded to subangular, fine and medium of sandstone. Firm, orange brown, sandy, slightly gravelly CLAY with occasional plant material. Gravel is rounded to subrounded, fine and medium including sandstone and quartz. Orange brown SANDSTONE, recovered as slightly clayey, very sandy, angular to subangular, fine to coarse gravel with occasional cobbles and boulders. Gravel consists of sandstone. Between 0.80m and 1.20m: slow progress (20 minutes). Complete at 1.20m	
Plan .		•		•	•••	Remarks Trial pit remained dry and stable throughout excavation.	
•				•	•••		
				•	•••		
				· •			
•				•			
•		•		•	<mark>-</mark>	Scale (approx) Logged By Figu	re No.

ASSOCIATES				Warren Hall Site - Broughton	TP14		
JCB 3CX		Dimensions Ground Level (mOD) 2.50m x 0.60m x 3.50m		Level (mOD)	Client Welsh Assembly Government	Job Number 40274	
		Location		Dates 16	6/01/2008	Engineer Opus International Consultants (UK) Ltd	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	E Level (mOD)	Depth (m) (Thickness)	Description	Legend
.20 .20 .30 .30 .70 .00 .00 .80 .90 .90 .80 .50 .50	D2 J3 B1 B4 D5 J6 D8 B7 D10 B9 D11 B12 D13 B14 D15 B16 D17				(0.20) 0.20 (0.50) 0.70 (0.30) 1.00 1.00 1.80 (0.10) 1.90	Grass over brown, very clayey, sandy TOPSOIL with some plant material. Firm, mottled orange, brown, grey, sandy, slightly gravelly CLAY with rootlets and occasional small pockets of black silt. Gravel is subangular to subrounded, fine and medium of sandstone. Rock object, recovered as orange, dark grey, clayey, sandy, angular to subangular, fine to coarse gravel of sandstone. Orange brown, very clayey SAND and subangular to subrounded, fine to coarse gravel. Gravel includes sandstone and siltstone. Very weak, dark blue, grey SILTSTONE, recovered slightly sandy, angular to subangular, fine and medium gravel of siltstone. Grey, slightly clayey SAND and subangular to subrounded, fine to coarse GRAVEL with occasional nodules of clay/silt At 2.80m: orange brown, and occasional cobbles. Gravel includes sandstone and siltstone. At 3.10m: grey/cream. Complete at 3.50m	
Plan .		•				Remarks Trial pit remained dry and stable throughout excavation.	
·				·			
		-		-	–		

Produced by the GEOtechnical DAtabase SYstem (GEODASY) (C) all rights reserved

	ASSOCI				<u> </u>	Warren Hall Site - Broughton	Numbe		
Excavation Method			Dimensions 2.70m x 0.60m x 4.00m				Level (mOD)	Client Welsh Assembly Government	Job Numbe 40274
		Location		Dates	5/01/2008	Engineer Opus International Consultants (UK) Ltd	Sheet 1/1		
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend		
20 20 30 30 60 60 60 20 20 70 70 00 00	D2 J3 B1 B4 D5 J6 D8 B7 D10 B9 B11 D12 B13 D14 B15 D16 B17 D18				(0.20) 0.20 (0.40) (0.40) 1.60 (1.00) (0.60) (0.60) (0.50) (0.30) 3.00 (1.00) 4.00	Grass over brown, very clayey, sandy, slightly gravell TOPSOIL with occasional plant material. Gravel is subrounded to subangular, fine to coarse including sandstone, clinker and ash. Soft, orange brown, sandy, slightly gravelly CLAY. G is subrounded to subangular, fine to coarse of sandst Soft, orange brown, mottled blue grey, slightly sandy, slightly gravelly CLAY with occasional rootlets. Grave rounded to subrounded, fine and medium of sandstor Below 1.00m: occasional cobbles. Stiff, mottled dark blue grey/orange brown, sandy, gra CLAY. Gravel is angular to subrounded, fine to coars including sandstone and siltstone. At 2.00m: occasional boulders. Light brown, very clayey, very gravelly SAND. Grave angular to subangular, fine to coarse including siltstor sandstone. Light brown, very clayey SAND and angular to subang fine to coarse GRAVEL. Gravel consists of siltstone a sandstone. Blue grey, very clayey SAND and angular to subangu fine to coarse GRAVEL. Gravel consists of siltstone a sandstone. Complete at 4.00m	avelly el is ne.		
Plan .						Remarks Trial pit remained dry throughout excavation. Slight spalling between 3.00m and 3.50m.			
				·	•••	· · -			
•									
	· ·	•	· · ·	•	•••				
		•	• • •	•	• •				
•						cale (approx) Logged By	Figure No.		

Produced by the GEOtechnical DAtabase SYstem (GEODASY) (C) all rights reserved

Figure A2.5

In-Situ Californian Bearing Ratio Test Results

14 Faraday Close, District 15, Pattinson North Industrial Estate, Washington, Tyne & Wear, NE38 8QJ. Tel. 0191 4166375 Fax. 0191 4191578 Email. lab@ifawashington.co.uk Internet.www.ianfarmerassociates.co.uk

<u>TEST CERTIFICATE</u>

<u>IN-SITU PENETRATION TEST - CALIFORNIA BEARING RATIO</u> AND MOISTURE CONTENT

BS 1377: Part 9 :1990: Clause 4.3 and BS 1377 : Part2 : 1990 : Clause 3.2

Job Number :	40674	Report Number :	C1@0.30/icbr
Client :	Ian Farmer Associates	Sample Number :	C1@0.30
Address :	17 Rivington Court,	Date Tested :	15/1/08
Cheshi	Warrington, Cheshire,	Date Received :	15/1/08
	WA1 4RT	Sampled By :	I.Henley for IFA
Site :	Warren Hall	Sampled At :	Site
Requested By	: Client	Groundwater Level :	Unknown
Test Location	: C1	Test Number :	C1
Test Depth :	0.30m	Weather Condition :	Rainy
Reaction Loa	d Inadequate : No	Presence of particles	> 20mm : No

Sample Description : Brown sandy CLAY

California Bearing Ratio	14
Moisture Content Beneath the Test Area (%)	19

Comments : Graph showing applied force and penetration relationship attached. CBR test is outside our scope of UKAS accreditation.

Checked By :

Date: 23/1/08

V.Williamson Assistant Laboratory Manager Page 1 of 2



Ian Farmer Associates (1998) Limited. Registered in England and Wales No. 3661447
 Registered Office: Unit 1, Bamburgh Court, TVTE, Gateshead, Tyne & Wear, NE11 0TX
 Offices in: Coventry (02476) 456565. Harpenden, Herts. (01582) 460018. Truro (01872) 261775.
 Warrington (01925) 855440. Newcastle upon Tyne (0191) 4828500. Motherwell (01698) 230231.

11-12 Skinnerburn Road Newcastle Upon Tyne NE 3RH Tel: 0191 261 2473 Fax: 0191 222 1856

PROJECT NAME : Warren Hall

PROJECT NO :

40674

SAMPLE DETAILS BELOW **CBR VALUE TRIAL PIT** DEPTH (m) MOISTURE Penetration 2.5mm 5.0mm CONTENT (%) Force (kN) 1.79 2.37 C1 0.30 19 Value 14 12 CBR 14

14 Faraday Close, District 15, Pattinson North Industrial Estate, Washington, Tyne & Wear, NE38 8QJ. Tel. 0191 4166375 Fax. 0191 4191578 Email. lab@ifawashington.co.uk Internet.www.ianfarmerassociates.co.uk

<u>TEST CERTIFICATE</u>

IN-SITU PENETRATION TEST - CALIFORNIA BEARING RATIO AND MOISTURE CONTENT

BS 1377: Part 9 :1990: Clause 4.3 and BS 1377 : Part2 : 1990 : Clause 3.2

Job Number :	40674	Report Number :	C2@0.30/icbr
Client :	Ian Farmer Associates	Sample Number :	C2@0.30
Address :	17 Rivington Court, Warrington,	Date Tested :	15/1/08
	Cheshire, WA1 4RT	Date Received :	15/1/08
		Sampled By :	I.Henley for IFA
Site :	Warren Hall	Sampled At :	Site
Requested By	: Client	Groundwater Level :	Unknown
Test Location :	C2	Test Number :	C2
Test Depth :	0.30m	Weather Condition :	Rainy
Reaction Load	Inadequate : No	Presence of particles >	20mm : No

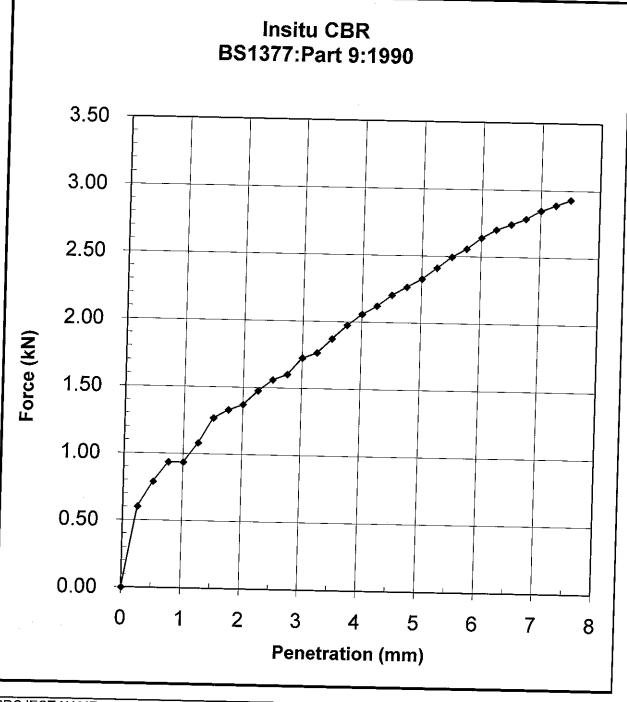
Sample Description : Brown slightly sandy CLAY

	California Bearing Ratio	12
Moi	sture Content Beneath the Test Area (%)	24

Comments : Graph showing applied force and penetration relationship attached. CBR test is outside our scope of UKAS accreditation.

23/1/08 Date :

V.Williamson Assistant Laboratory Manager Page 1 of 2


Checked By :

Ian Farmer Associates (1998) Limited. Registered in England and Wales No. 3661447
 Registered Office: Unit 1, Bamburgh Court, TVTE, Gateshead, Tyne & Wear, NE11 0TX
 Offices in: Coventry (02476) 456565. Harpenden, Herts. (01582) 460018. Truro (01872) 261775.
 Warrington (01925) 855440. Newcastle upon Tyne (0191) 4828500. Motherwell (01698) 230231.

AGS ASSOCIATION OF GEOTECHNICAL & GEOGENVIRONMENTAL SPECIALISTS

11-12 Skinnerburn Road Newcastle Upon Tyne NE 3RH Tel: 0191 261 2473 Fax: 0191 222 1856

PROJECT NAME : Warren

Warren Hall

PROJECT NO :

S.	AMPLE DETAILS BELO			BR VALUE	
	DEPTH (m)	MOISTURE CONTENT (%)	Penetration	2.5mm	5.0mm
C2	0.30	24	Force (kN) Value	1.56 12	2.33 12
	L	l	CBR	1	2

14 Faraday Close, District 15, Pattinson North Industrial Estate, Washington, Tyne & Wear, NE38 8QJ. Tel. 0191 4166375 Fax. 0191 4191578 Email. lab@ifawashington.co.uk Internet.www.ianfarmerassociates.co.uk

TEST CERTIFICATE

<u>IN-SITU PENETRATION TEST - CALIFORNIA BEARING RATIO</u> <u>AND MOISTURE CONTENT</u>

BS 1377: Part 9 :1990: Clause 4.3 and BS 1377 : Part2 : 1990 : Clause 3.2

Job Number :	40674	Report Number :	C3@0.30/icbr
Client :	Ian Farmer Associates	Sample Number :	C3@0.30
Address :	17 Rivington Court, Warrington,	Date Tested :	15/1/08
	Cheshire, WA1 4RT	Date Received :	15/1/08
		Sampled By :	I.Henley for IFA
Site :	Warren Hall	Sampled At :	Site
Requested By	: Client	Groundwater Level :	Unknown
Test Location	C3	Test Number :	C3 .
Test Depth :	0.30m	Weather Condition :	Rainy
Reaction Load	Inadequate : No	Presence of particles >	20mm : No

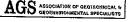
Sample Description : Brown CLAY

California Bearing Ratio	9.8
Moisture Content Beneath the Test Area (%)	26

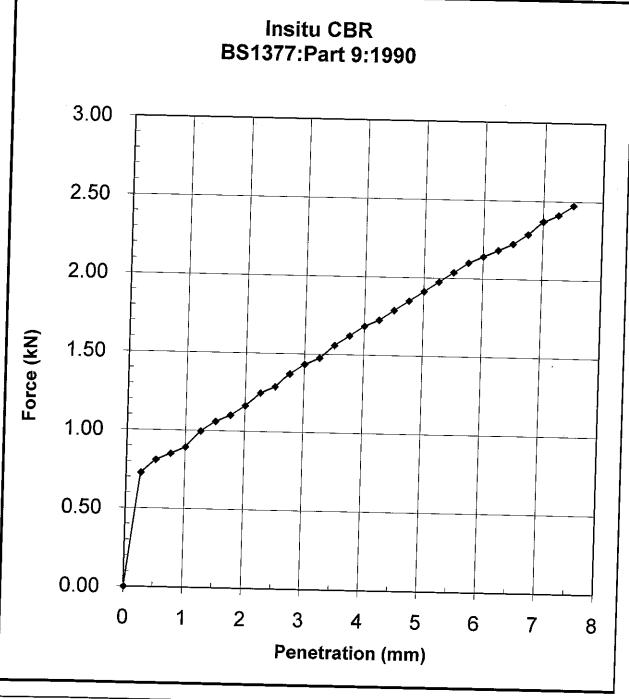
Comments : Graph showing applied force and penetration relationship attached. CBR test is outside our scope of UKAS accreditation.

Checked By :

Date: 23


V.Williamson Assistant Laboratory Manager

Page 1 of 2



Ian Farmer Associates (1998) Limited. Registered in England and Wales No. 3661447
 Registered Office: Unit 1, Bamburgh Court, TVTE, Gateshead, Tyne & Wear, NE11 0TX
 Offices in: Coventry (02476) 456565. Harpenden, Herts. (01582) 460018. Truro (01872) 261775.
 Warrington (01925) 855440. Newcastle upon Tyne (0191) 4828500. Motherwell (01698) 230231.

11-12 Skinnerburn Road Newcastle Upon Tyne NE 3RH Tel: 0191 261 2473 Fax: 0191 222 1856

PROJECT NAME :	Warren Hall

SAMPLE DETAILS BELOW **CBR VALUE** TRIAL PIT DEPTH (m) MOISTURE Penetration 2.5mm 5.0mm CONTENT (%) Force (kN) 1.29 1.91 C3 0.30 26 Value 9.8 9.6 CBR 9.8

PROJECT NO :

14 Faraday Close, District 15, Pattinson North Industrial Estate, Washington, Tyne & Wear, NE38 8QJ. Tel. 0191 4166375 Fax. 0191 4191578 Email. lab@ifawashington.co.uk Internet.www.ianfarmerassociates.co.uk

TEST CERTIFICATE

IN-SITU PENETRATION TEST - CALIFORNIA BEARING RATIO AND MOISTURE CONTENT

BS 1377: Part 9 :1990: Clause 4.3 and BS 1377 : Part2 : 1990 : Clause 3.2

	Job Number :	40674	Report Number :	C4@0.30/icbr
	Client :	Ian Farmer Associates	Sample Number :	C4@0.30
	Address :	17 Rivington Court, Warrington,	Date Tested :	15/1/08
		Cheshire, WA1 4RT	Date Received :	15/1/08
			Sampled By :	I.Henley for IFA
	Site :	Warren Hall	Sampled At :	Site
	Requested By :	Client	Groundwater Level :	Unknown
	Test Location :	C4	Test Number :	C4
,	Test Depth :	0.30m	Weather Condition :	Rainy
]	Reaction Load	Inadequate : No	Presence of particles >	20mm : No

Sample Description : Brown CLAY

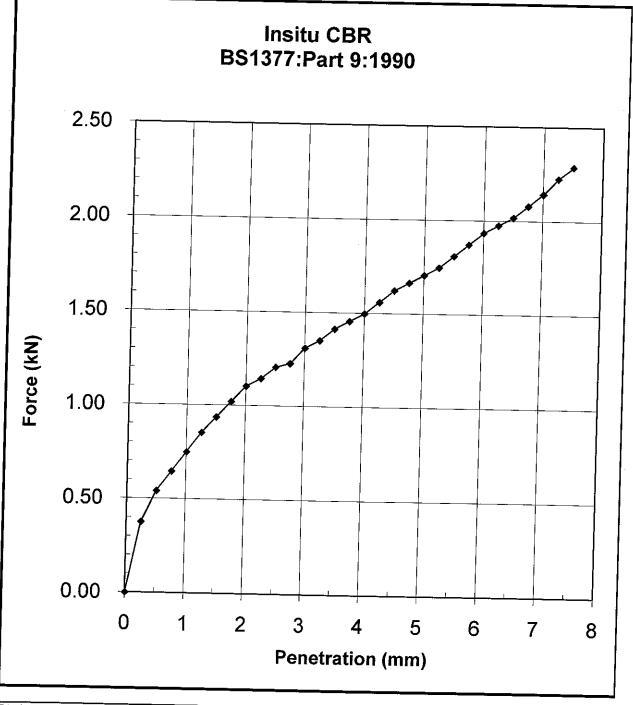
California Bearing Ratio	9.1
Moisture Content Beneath the Test Area (%)	21

Comments : Graph showing applied force and penetration relationship attached. CBR test is outside our scope of UKAS accreditation.

Date : _ 23/

V.Williamson Assistant Laboratory Manager

Page 1 of 2


Checked By :

Ian Farmer Associates (1998) Limited. Registered in England and Wales No. 3661447
 Registered Office: Unit 1, Bamburgh Court, TVTE, Gateshead, Tyne & Wear, NE11 0TX
 Offices in: Coventry (02476) 456565. Harpenden, Herts. (01582) 460018. Truro (01872) 261775.
 Warrington (01925) 855440. Newcastle upon Tyne (0191) 4828500. Motherwell (01698) 230231.

GS ASSOCIATION OF GEOTECHNICAL & GEOGHVIRONMENTAL APECIALISTS

11-12 Skinnerburn Road Newcastle Upon Tyne NE 3RH Tel: 0191 261 2473 Fax: 0191 222 1856

PROJECT NAME : Warren Hall PROJECT NO :

S	AMPLE DETAILS BEL	OW	(
TRIAL PIT	DEPTH (m)	MOISTURE CONTENT (%)	Penetration	2.5mm	5.0mm
C4	0.30	21	Force (kN) Value	1.21 9.1	1.70 8.5
	,	<u> </u>	CBR	9	.1

14 Faraday Close, District 15, Pattinson North Industrial Estate, Washington, Tyne & Wear, NE38 8QJ. Tel. 0191 4166375 Fax. 0191 4191578 Email. lab@ifawashington.co.uk Internet.www.ianfarmerassociates.co.uk

TEST CERTIFICATE

IN-SITU PENETRATION TEST - CALIFORNIA BEARING RATIO AND MOISTURE CONTENT

BS 1377: Part 9 :1990: Clause 4.3 and BS 1377 : Part2 : 1990 : Clause 3.2

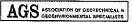
Job Number :	40674	Report Number :	C5@0.30/icbr
Client :	Ian Farmer Associates	Sample Number :	C5@0.30
Address :	17 Rivington Court, Warrington,	Date Tested :	15/1/08
Warnington, Cheshire, WA1 4RT	Date Received :	15/1/08	
		Sampled By :	I.Henley for IFA
Site :	Warren Hall	Sampled At :	Site
Requested By	: Client	Groundwater Level :	Unknown
Test Location	: C5	Test Number :	C5
Test Depth :	0.30m	Weather Condition :	Rainy
Reaction Load	Inadequate : No	Presence of particles >	> 20mm : No

Sample Description : Brown slightly sandy slightly gravelly CLAY

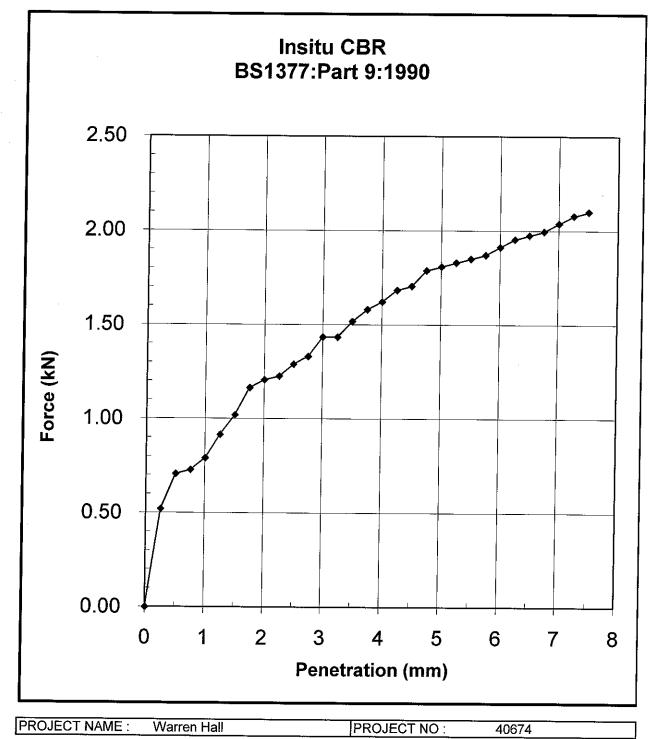
California Bearing Ratio	9.8
Moisture Content Beneath the Test Area (%)	16

Comments : Graph showing applied force and penetration relationship attached. CBR test is outside our scope of UKAS accreditation.

Checked By :


Date : _23/1/08

V.Williamson Assistant Laboratory Manager Page 1 of 2



Ian Farmer Associates (1998) Limited. Registered in England and Wales No. 3661447
 Registered Office: Unit 1, Bamburgh Court, TVTE, Gateshead, Tyne & Wear, NE11 0TX
 Offices in: Coventry (02476) 456565. Harpenden, Herts. (01582) 460018. Truro (01872) 261775.
 Warrington (01925) 855440. Newcastle upon Tyne (0191) 4828500. Motherwell (01698) 230231.

11-12 Skinnerburn Road Newcastle Upon Tyne NE 3RH Tel: 0191 261 2473 Fax: 0191 222 1856

SAMPLE DETAILS BELOW **CBR VALUE** TRIAL PIT DEPTH (m) MOISTURE Penetration 2.5mm 5.0mm CONTENT (%) Force (kN) 1.29 1.81 C5 0.30 16 Value 9.8 9.0 CBR 9.8

14 Faraday Close, District 15, Pattinson North Industrial Estate, Washington, Tyne & Wear, NE38 8QJ. Tel. 0191 4166375 Fax. 0191 4191578 Email. lab@ifawashington.co.uk Internet.www.ianfarmerassociates.co.uk

TEST CERTIFICATE

IN-SITU PENETRATION TEST - CALIFORNIA BEARING RATIO AND MOISTURE CONTENT

BS 1377: Part 9 :1990: Clause 4.3 and BS 1377 : Part2 : 1990 : Clause 3.2

40674	Report Number :	C6@0.30/icbr
Ian Farmer Associates	Sample Number :	C6@0.30
17 Rivington Court, Worrington	Date Tested :	15/1/08
Warrington, Cheshire, WA1 4RT	Date Received :	15/1/08
	Sampled By :	I.Henley for IFA
Warren Hall	Sampled At :	Site
: Client	Groundwater Level :	Unknown
: C6	Test Number :	C6
0.30m	Weather Condition :	Rainy
d Inadequate : No	Presence of particles	> 20mm : No
	Ian Farmer Associates 17 Rivington Court, Warrington, Cheshire, WA1 4RT Warren Hall Client Client Cliont	Ian Farmer AssociatesSample Number :17 Rivington Court, Warrington, Cheshire, WA1 4RTDate Tested :Date Received : Date Received : Sampled By :Date Received :Warren HallSampled At ::ClientGroundwater Level ::C6Test Number :0.30mWeather Condition :

Sample Description : Brown slightly gravelly clayey SAND

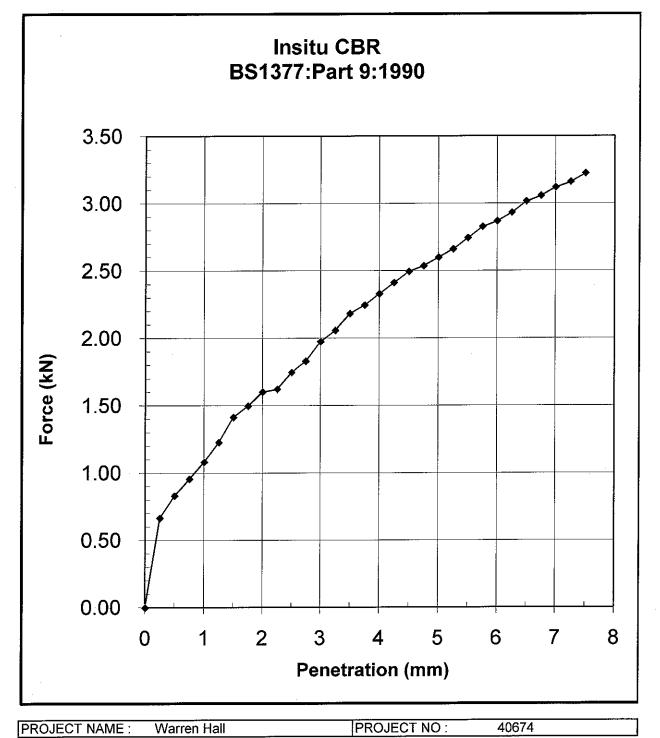
California Bearing Ratio	13
Moisture Content Beneath the Test Area (%)	30

Comments : Graph showing applied force and penetration relationship attached. CBR test is outside our scope of UKAS accreditation.

Checked By :

Date :

Williamson Assistant Laboratory Manager Page 1 of 2



Ian Farmer Associates (1998) Limited. Registered in England and Wales No. 3661447 Registered Office: Unit 1, Bamburgh Court, TVTE, Gateshead, Tyne & Wear, NE11 0TX Offices in: Coventry (02476) 456565. Harpenden, Herts. (01582) 460018. Truro (01872) 261775. Warrington (01925) 855440. Newcastle upon Tyne (0191) 4828500. Motherwell (01698) 230231.

AGS ASSOCIATION OF GEOTECHNICAL &

11-12 Skinnerburn Road Newcastle Upon Tyne NE 3RH Tel: 0191 261 2473 Fax: 0191 222 1856

CBR VALUE SAMPLE DETAILS BELOW TRIAL PIT DEPTH (m) MOISTURE Penetration 2.5mm 5.0mm CONTENT (%) 2.60 Force (kN) 1.75 30 Value 13 13 C6 0.30 CBR 13

14 Faraday Close, District 15, Pattinson North Industrial Estate, Washington, Tyne & Wear, NE38 8QJ. Tel. 0191 4166375 Fax. 0191 4191578 Email. lab@ifawashington.co.uk Internet.www.ianfarmerassociates.co.uk

TEST CERTIFICATE

IN-SITU PENETRATION TEST - CALIFORNIA BEARING RATIO AND MOISTURE CONTENT

BS 1377: Part 9 :1990: Clause 4.3 and BS 1377 : Part2 : 1990 : Clause 3.2

Job Number :	40674	Report Number :	C7@0.30/icbr
Client :	Ian Farmer Associates	Sample Number :	C7@0.30
Address :	17 Rivington Court,	Date Tested :	15/1/08
Warrington, Cheshire, WA1 4RT	Date Received :	15/1/08	
	WAI 4KI	Sampled By :	I.Henley for IFA
Site :	Warren Hall	Sampled At :	Site
Requested By	: Client	Groundwater Level :	Unknown
Test Location	: C7	Test Number :	C7
Test Depth :	0.30m	Weather Condition :	Rainy
Reaction Load	d Inadequate : No	Presence of particles	> 20mm : No

Sample Description : Brown slightly gravelly clayey SAND

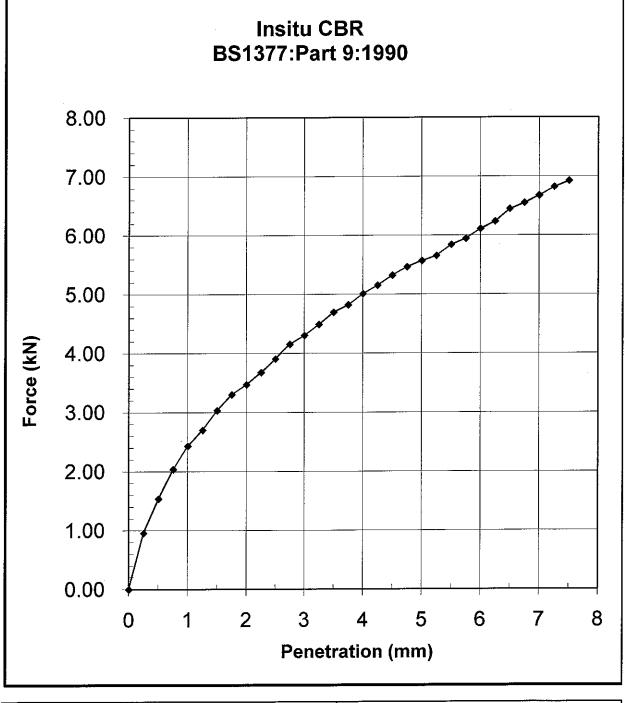
California Bearing Ratio	30
Moisture Content Beneath the Test Area (%)	19

Comments : Graph showing applied force and penetration relationship attached. CBR test is outside our scope of UKAS accreditation.

Checked By :

Date : 23/1

Williamson Assistant Laboratory Manager Page 1 of 2



Ian Farmer Associates (1998) Limited. Registered in England and Wales No. 3661447
 Registered Office: Unit 1, Barnburgh Court, TVTE, Gateshead, Tyne & Wear, NE11 0TX
 Offices in: Coventry (02476) 456565. Harpenden, Herts. (01582) 460018. Truro (01872) 261775.
 Warrington (01925) 855440. Newcastle upon Tyne (0191) 4828500. Motherwell (01698) 230231.

AGS ASSOCIATION OF GEOTECHNICAL &

11-12 Skinnerburn Road Newcastle Upon Tyne NE 3RH Tel: 0191 261 2473 Fax: 0191 222 1856

PROJECT NAME : War

Warren Hall

SAMPLE DETAILS BELOW

PROJECT NO :

40674

CBR VALUE

TRIAL PIT	DEPTH (m)	MOISTURE	Penetration	2.5mm	5.0mm
		CONTENT (%)			
			Force (kN)	3.91	5.57
C7	0.30	19	Value	30	28
			CBR		30

14 Faraday Close, District 15, Pattinson North Industrial Estate, Washington, Tyne & Wear, NE38 8QJ. Tel. 0191 4166375 Fax. 0191 4191578 Email. lab@ifawashington.co.uk Internet.www.ianfarmerassociates.co.uk

TEST CERTIFICATE

IN-SITU PENETRATION TEST - CALIFORNIA BEARING RATIO AND MOISTURE CONTENT

BS 1377: Part 9 :1990: Clause 4.3 and BS 1377 : Part2 : 1990 : Clause 3.2

Job Number :	40674	Report Number :	C8@0.30/icbr
Client :	Ian Farmer Associates	Sample Number :	C8@0.30
Address :	17 Rivington Court, Warrington	Date Tested :	15/1/08
Warrington, Cheshire, WA1 4RT	Date Received :	15/1/08	
	Sampled By :	I.Henley for IFA	
Site :	Warren Hall	Sampled At :	Site
Requested By	: Client	Groundwater Level :	Unknown
Test Location	: C8	Test Number :	C8
Test Depth :	0.30m	Weather Condition :	Rainy
Reaction Load	d Inadequate : No	Presence of particles	> 20mm : No

Sample Description : Brown slightly gravelly clayey SAND

California Bearing Ratio	8.7
Moisture Content Beneath the Test Area (%)	20

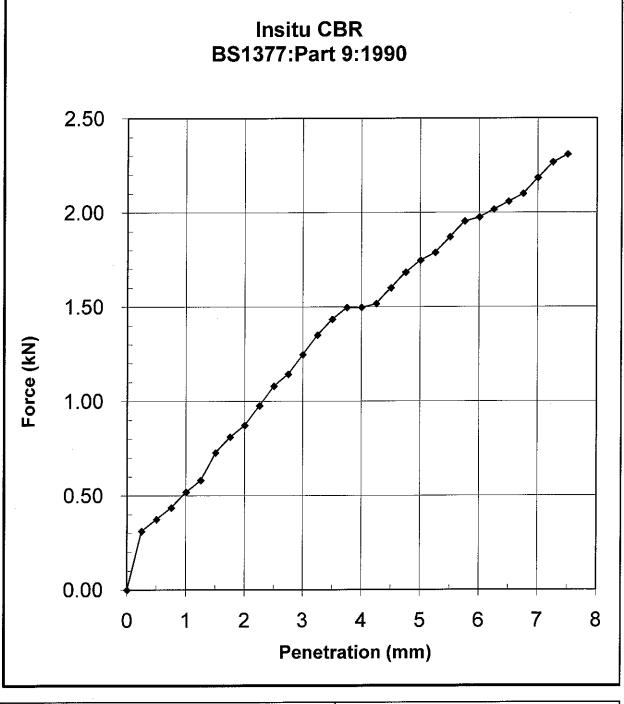
Comments : Graph showing applied force and penetration relationship attached. CBR test is outside our scope of UKAS accreditation.

Checked By

Date : _23/1 08

Williamson Assistant Laboratory Manager

Page 1 of 2



Ian Farmer Associates (1998) Limited. Registered in England and Wales No. 3661447
 Registered Office: Unit 1, Bamburgh Court, TVTE, Gateshead, Tyne & Wear, NE11 0TX
 Offices in: Coventry (02476) 456565. Harpenden, Herts. (01582) 460018. Truro (01872) 261775.
 Warrington (01925) 855440. Newcastle upon Tyne (0191) 4828500. Motherwell (01698) 230231.

AGS ASSOCIATION OF GEOTECHINICAL &

11-12 Skinnerburn Road Newcastle Upon Tyne NE 3RH Tel: 0191 261 2473 Fax: 0191 222 1856

PROJECT NAME : Wai

Warren Hall

PROJECT NO :

S/	AMPLE DETAILS BELC	W	0	CBR VALUE	
TRIAL PIT	DEPTH (m)	MOISTURE CONTENT (%)	Penetration	2.5mm	5.0mm
C8	0.30	20	Force (kN) Value	1.08 8.2	1.75 8.7
			CBR		.7

14 Faraday Close, District 15, Pattinson North Industrial Estate, Washington, Tyne & Wear, NE38 8QJ. Tel. 0191 4166375 Fax. 0191 4191578 Email. lab@ifawashington.co.uk Internet.www.ianfarmerassociates.co.uk

TEST CERTIFICATE

IN-SITU PENETRATION TEST - CALIFORNIA BEARING RATIO AND MOISTURE CONTENT

BS 1377: Part 9 :1990: Clause 4.3 and BS 1377 : Part2 : 1990 : Clause 3.2

Job Number :	40674	Report Number :	C9@0.30/icbr
Client :	Ian Farmer Associates	Sample Number :	C9@0.30
Address :	17 Rivington Court,	Date Tested :	15/1/08
Warrington, Cheshire, WA1 4RT	Date Received :	15/1/08	
	Sampled By :	I.Henley for IFA	
Site :	Warren Hall	Sampled At :	Site
Requested By	: Client	Groundwater Level :	Unknown
Test Location	: C9	Test Number :	С9
Test Depth :	0.30m	Weather Condition :	Rainy
Reaction Load	l Inadequate : No	Presence of particles	> 20mm : No

Sample Description : Brown slightly gravelly CLAY

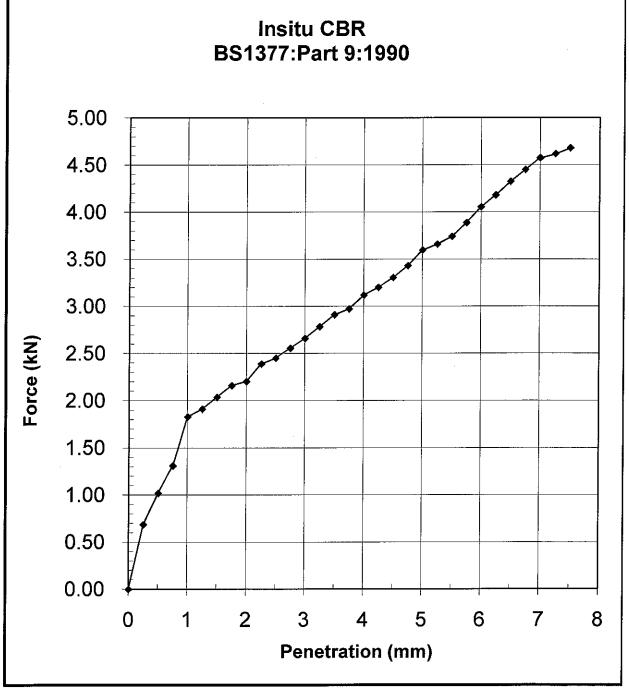
California Bearing Ratio	19
Moisture Content Beneath the Test Area (%)	25

Comments : Graph showing applied force and penetration relationship attached. CBR test is outside our scope of UKAS accreditation.

Checked By :

Date: 23/1/08

Williamson Assistant Laboratory Manager. Page 1 of 2



Ian Farmer Associates (1998) Limited. Registered in England and Wales No. 3661447 Registered Office: Unit 1, Bamburgh Court, TVTE, Gateshead, Tyne & Wear, NE11 0TX Offices in: Coventry (02476) 456565. Harpenden, Herts. (01582) 460018. Truro (01872) 261775. Warrington (01925) 855440. Newcastle upon Tyne (0191) 4828500. Motherwell (01698) 230231.

AGS ASSOCIATION OF GEOTECHNICAL &

11-12 Skinnerburn Road Newcastle Upon Tyne NE 3RH Tel: 0191 261 2473 Fax: 0191 222 1856

PROJECT NAME : Warr

Warren Hall

PROJECT NO :

SA	MPLE DETAILS BELC	W	(BR VALUE	
TRIAL PIT	DEPTH (m)	MOISTURE	Penetration	2.5mm	5.0mm
		CONTENT (%)			
			Force (kN)	2.45	3.60
C9	0.30	25	Value	19	18
			CBR	1	9

14 Faraday Close, District 15, Pattinson North Industrial Estate, Washington, Tyne & Wear, NE38 8QJ. Tel. 0191 4166375 Fax. 0191 4191578 Email. lab@ifawashington.co.uk Internet.www.ianfarmerassociates.co.uk

TEST CERTIFICATE

IN-SITU PENETRATION TEST - CALIFORNIA BEARING RATIO AND MOISTURE CONTENT

BS 1377: Part 9 :1990: Clause 4.3 and BS 1377 : Part2 : 1990 : Clause 3.2

Job Number :	40674	Report Number :	C10@0.30/icbr
Client :	Ian Farmer Associates	Sample Number :	C10@0.30
Address :	17 Rivington Court, Warrington	Date Tested :	15/1/08
Warrington, Cheshire, WA1 4RT	Date Received :	15/1/08	
	WAI 4KI	Sampled By :	I.Henley for IFA
Site :	Warren Hall	Sampled At :	Site
Requested By	: Client	Groundwater Level :	Unknown
Test Location	: C10	Test Number :	C10
Test Depth :	0.30m	Weather Condition :	Rainy
Reaction Load	I Inadequate : No	Presence of particles >	> 20mm : No

Sample Description : Brown CLAY

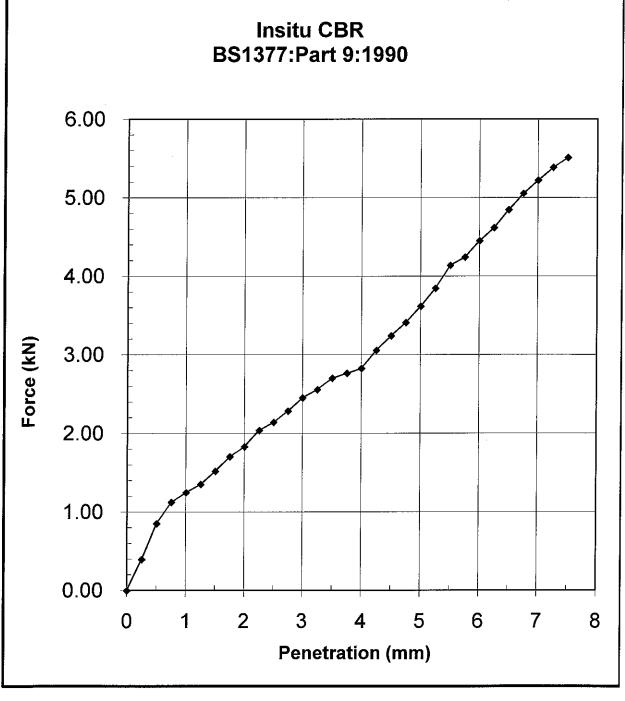
California Bearing Ratio	18
Moisture Content Beneath the Test Area (%)	21

Comments : Graph showing applied force and penetration relationship attached. CBR test is outside our scope of UKAS accreditation.

Checked By :

23/1/08 Date : ____

Williamson Assistant Laboratory Manager Page 1 of 2



Ian Farmer Associates (1998) Limited. Registered in England and Wales No. 3661447
 Registered Office: Unit 1, Bamburgh Court, TVTE, Gateshead, Tyne & Wear, NE11 0TX
 Offices in: Coventry (02476) 456565. Harpenden, Herts. (01582) 460018. Truro (01872) 261775.
 Warrington (01925) 855440. Newcastle upon Tyne (0191) 4828500. Motherwell (01698) 230231.

AGS ASSOCIATION OF GEOTECHNICAL &

11-12 Skinnerburn Road Newcastle Upon Tyne NE 3RH Tel: 0191 261 2473 Fax: 0191 222 1856

PROJECT NAME :

Warren Hall

PROJECT NO :

SAMPLE DETAILS BELOW			BR VALUE		
TRIAL PIT	DEPTH (m) MOISTURE		Penetration	2.5mm	5.0mm
		CONTENT (%)			
			Force (kN)	2.14	3.62
C10	0.30	21	Value	16	18
			CBR	1	8

14 Faraday Close, District 15, Pattinson North Industrial Estate, Washington, Tyne & Wear, NE38 8QJ. Tel. 0191 4166375 Fax. 0191 4191578 Email. lab@ifawashington.co.uk Internet.www.ianfarmerassociates.co.uk

TEST CERTIFICATE

IN-SITU PENETRATION TEST - CALIFORNIA BEARING RATIO AND MOISTURE CONTENT

BS 1377: Part 9 :1990: Clause 4.3 and BS 1377 : Part2 : 1990 : Clause 3.2

Job Number :	40674	Report Number :	C11@0.30/icbr
Client :	Ian Farmer Associates	Sample Number :	C11@0.30
Address : 17 Rivington Court, Warrington,		Date Tested :	15/1/08
Cheshire, WA1 4RT	Date Received :	15/1/08	
WAI 4RI		Sampled By :	I.Henley for IFA
Site :	Warren Hall	Sampled At :	Site
Requested By	: Client	Groundwater Level :	Unknown
Test Location	: C11	Test Number :	C11
Test Depth :	0.30m	Weather Condition :	Rainy
Reaction Load	d Inadequate : No	Presence of particles	> 20mm : No

Sample Description : Brown slightly sandy CLAY

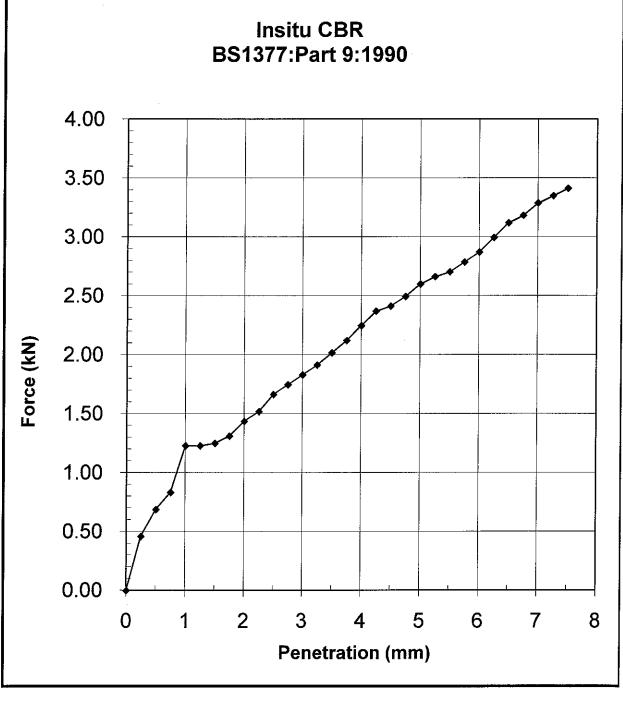
California Bearing Ratio	13
Moisture Content Beneath the Test Area (%)	19

Comments : Graph showing applied force and penetration relationship attached. CBR test is outside our scope of UKAS accreditation.

Checked By :

Date : 23/1 108

Williamson Assistant Laboratory Manager Page 1 of 2



Ian Farmer Associates (1998) Limited. Registered in England and Wales No. 3661447 Registered Office: Unit 1, Bamburgh Court, TVTE, Gateshead, Tyne & Wear, NE11 0TX Offices in: Coventry (02476) 456565. Harpenden, Herts. (01582) 460018. Truro (01872) 261775. Warrington (01925) 855440. Newcastle upon Tyne (0191) 4828500. Motherwell (01698) 230231.

AGS ASSOCIATION OF GEOTECHNICAL B

11-12 Skinnerburn Road Newcastle Upon Tyne NE 3RH Tel: 0191 261 2473 Fax: 0191 222 1856

PROJECT NAME : Warren

Warren Hall

PROJECT NO :

SAMPLE DETAILS BELOW			BR VALUE		
TRIAL PIT	DEPTH (m)	MOISTURE	Penetration	2.5mm	5.0mm
		CONTENT (%)			
			Force (kN)	1.66	2.60
C11	0.30	19	Value	13	13
			CBR	1	3

14 Faraday Close, District 15, Pattinson North Industrial Estate, Washington, Tyne & Wear, NE38 8QJ. Tel. 0191 4166375 Fax. 0191 4191578 Email. lab@ifawashington.co.uk Internet.www.ianfarmerassociates.co.uk

TEST CERTIFICATE

IN-SITU PENETRATION TEST - CALIFORNIA BEARING RATIO AND MOISTURE CONTENT

BS 1377: Part 9 :1990: Clause 4.3 and BS 1377 : Part2 : 1990 : Clause 3.2

Job Number :	40674	Report Number :	C12@0.30/icbr
Client :	Ian Farmer Associates	Sample Number :	C12@0.30
Address :	17 Rivington Court, Warrington,	Date Tested :	15/1/08
	Cheshire, WA1 4RT	Date Received :	15/1/08
		Sampled By :	I.Henley for IFA
Site :	Warren Hall	Sampled At :	Site
Requested By	: Client	Groundwater Level :	Unknown
Test Location	: C12	Test Number :	C12
Test Depth :	0.30m	Weather Condition :	Rainy
Reaction Load	l Inadequate : No	Presence of particles	> 20mm : No

Sample Description : Brown slightly sandy CLAY

California Bearing Ratio	7.4
Moisture Content Beneath the Test Area (%)	19

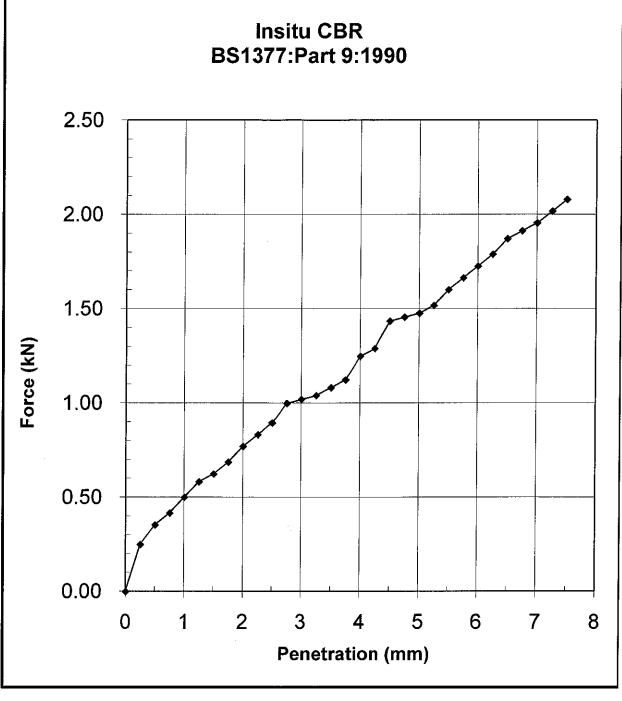
Comments : Graph showing applied force and penetration relationship attached. CBR test is outside our scope of UKAS accreditation.

Checked By :

Date: 23/1/08

Williamson Assistant Laboratory Manager

Page 1 of 2



Ian Farmer Associates (1998) Limited. Registered in England and Wales No. 3661447 Registered Office: Unit I, Bamburgh Court, TVTE, Gateshead, Tyne & Wear, NE11 0TX Offices in: Coventry (02476) 456565. Harpenden, Herts. (01582) 460018. Truro (01872) 261775. Warrington (01925) 855440. Newcastle upon Tyne (0191) 4828500. Motherwell (01698) 230231.

AGS ASSOCIATION OF GEOLECHNICAL & GEOENVIRONMENTAL SPECIALISTS

11-12 Skinnerburn Road Newcastle Upon Tyne NE 3RH Tel: 0191 261 2473 Fax: 0191 222 1856

PROJECT NAME :

Warren Hall

PROJECT NO :

40674

SAMPLE DETAILS BELOW **CBR VALUE** TRIAL PIT DEPTH (m) MOISTURE Penetration 2.5mm 5.0mm CONTENT (%) 0.89 1.48 Force (kN) C12 0.30 19 Value 6.8 7.4 CBR 7.4

14 Faraday Close, District 15, Pattinson North Industrial Estate, Washington, Tyne & Wear, NE38 8QJ. Tel. 0191 4166375 Fax. 0191 4191578 Email. lab@ifawashington.co.uk Internet.www.ianfarmerassociates.co.uk

TEST CERTIFICATE

IN-SITU PENETRATION TEST - CALIFORNIA BEARING RATIO AND MOISTURE CONTENT

BS 1377: Part 9 :1990: Clause 4.3 and BS 1377 : Part2 : 1990 : Clause 3.2

Job Number: 40674		Report Number :	C13@0.30/icbr
Client :	Ian Farmer Associates	Sample Number :	C13@0.30
Address :	17 Rivington Court, Warrington,	Date Tested :	15/1/08
	Cheshire, WA1 4RT	Date Received :	15/1/08
WAI 4RT		Sampled By :	I.Henley for IFA
Site :	Warren Hall	Sampled At :	Site
Requested By : Client		Groundwater Level :	Unknown
Test Location	: C13	Test Number :	C13
Test Depth :	0.30m	Weather Condition :	Rainy
Reaction Load	d Inadequate : No	Presence of particles	> 20mm : No

Sample Description : Brown slightly sandy CLAY

California Bearing Ratio	12
Moisture Content Beneath the Test Area (%)	20

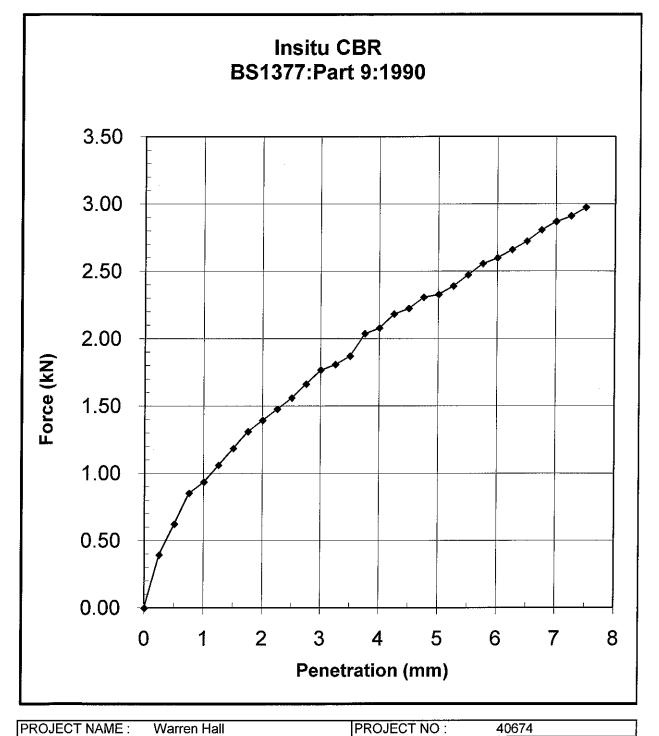
Comments : Graph showing applied force and penetration relationship attached. CBR test is outside our scope of UKAS accreditation.

Checked By :

Date : 23 108

Williamson Assistant Laboratory Manager

Page 1 of 2



Ian Farmer Associates (1998) Limited. Registered in England and Wales No. 3661447
 Registered Office: Unit 1, Bamburgh Court, TVTE, Gateshead, Tyne & Wear, NE11 0TX
 Offices in: Coventry (02476) 456565. Harpenden, Herts. (01582) 460018. Truro (01872) 261775.
 Warrington (01925) 855440. Newcastle upon Tyne (0191) 4828500. Motherwell (01698) 230231.

11-12 Skinnerburn Road Newcastle Upon Tyne NE 3RH Tel: 0191 261 2473 Fax: 0191 222 1856

SAMPLE DETAILS BELOW **CBR VALUE** TRIAL PIT DEPTH (m) MOISTURE Penetration 2.5mm 5.0mm CONTENT (%) 2.33 Force (kN) 1.56 C13 0.30 20 Value 12 12 CBR 12

14 Faraday Close, District 15, Pattinson North Industrial Estate, Washington, Tyne & Wear, NE38 8QJ. Tel. 0191 4166375 Fax. 0191 4191578 Email. lab@ifawashington.co.uk Internet.www.ianfarmerassociates.co.uk

TEST CERTIFICATE

IN-SITU PENETRATION TEST - CALIFORNIA BEARING RATIO AND MOISTURE CONTENT

BS 1377: Part 9 :1990: Clause 4.3 and BS 1377 : Part2 : 1990 : Clause 3.2

Job Number :	40674	Report Number :	C14@0.30/icbr			
Client :	Ian Farmer Associates	Sample Number :	C14 @0.30			
Address :	17 Rivington Court, Warrington,	Date Tested :	15/1/08			
	Cheshire, WA1 4RT	Date Received :	15/1/08			
		Sampled By :	I.Henley for IFA			
Site :	Warren Hall	Sampled At :	Site			
Requested By	: Client	Groundwater Level :	Unknown			
Test Location	: C14	Test Number :	C14			
Test Depth: 0.30m		Weather Condition :	Rainy			
Reaction Load	Inadequate : No	Presence of particles	> 20mm : No			

Sample Description : Brown CLAY

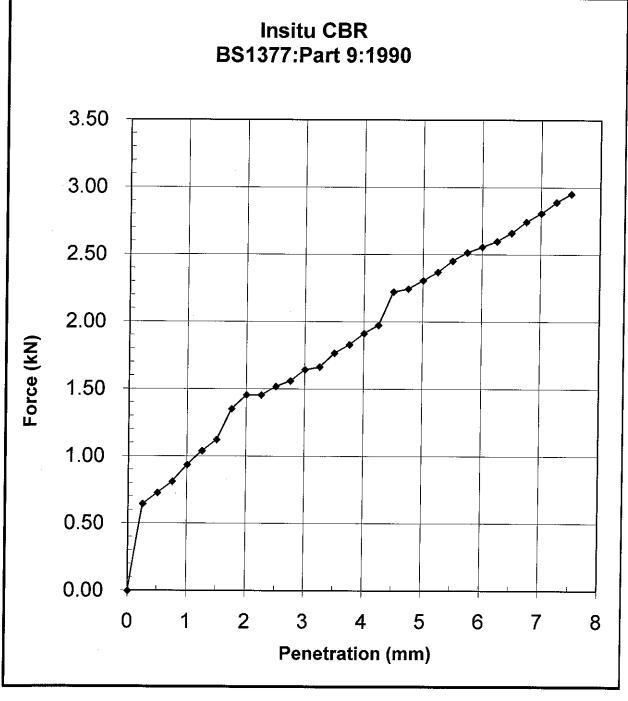
California Bearing Ratio	12
Moisture Content Beneath the Test Area (%)	25

Comments : Graph showing applied force and penetration relationship attached. CBR test is outside our scope of UKAS accreditation.

Checked By :

Date : 23/1/08

V.Williamson Assistant Laboratory Manager Page 1 of 2



Ian Farmer Associates (1998) Limited. Registered in England and Wales No. 3661447 Registered Office: Unit 1, Bamburgh Court, TVTE, Gateshead, Tyne & Wear, NE11 0TX Offices in: Coventry (02476) 456565. Harpenden, Herts. (01582) 460018. Truro (01872) 261775. Warrington (01925) 855440. Newcastle upon Tyne (0191) 4828500. Motherwell (01698) 230231.

AGS ASSOCIATION OF GEOTECHNICAL &

11-12 Skinnerburn Road Newcastle Upon Tyne NE 3RH Tel: 0191 261 2473 Fax: 0191 222 1856

PROJECT NAME :

Warren Hall

PROJECT NO :

S/	MPLE DETAILS BELC	CBR VALUE						
TRIAL PIT	RIAL PIT DEPTH (m) MOISTURE		Penetration	2.5mm	5.0mm			
			Force (kN)	1.52	2.31			
C14	0.30	25	Value	11	12			
¥4			CBR	1	2			

Figure A2.6

SPT Summary Table

Site

IAN FARMER ASSOCIATES

Standard Penetration Test Results

Job Number

Sheet

40274

1/2

: Warren Hall Site - Broughton

Client : Welsh Assembly Government

Engineer: Opus International Consultants (UK) Ltd

Borehole	Base of Borehole	End of Seating	End of Test	Test	Seating per	g Blows 75mm	Blows for each 75mm penetration				Result	Comment	s
Number	Borehole (m)	End of Seating Drive (m)	Test Drive (m)	e Type <u>1 2 1 2 3</u>		3	4	nesult	Comment	-			
BH01	2.00	2.15	2.45	SPT	3	3	3	4	3	6	N=16		
BH01	3.00	3.15	3.45	SPT	5	6	5	5	5	7	N=22		
BH01	4.00	4.15	4.44	SPT	7	10	12	13	14	11	50/290mm		
BH02	1.20	1.35	1.64	SPT	7	11	12	11	12	15	50/290mm		
BH02	2.00	2.15	2.45	CPT	5	3	4	5	4	5	N=18		
BH02	3.00	3.15	3.45	CPT	2	3	4	3	4	4	N=15		
BH02	4.00	4.15	4.45	SPT	4	5	5	4	5	4	N=18		
BH02	5.00	5.15	5.44	SPT	7	8	11	12	13	14	50/285mm		
BH02	6.00	6.15	6.38	CPT	7	9	14	16	20		50/225mm		
BH03	2.00	2.15	2.45	SPT	2	2	2	3	2	3	N=10		
BH03	4.00	4.15	4.45	SPT	4	5	6	6	6	10	N=28		
BH03	5.50	5.65	5.82	CPT	9	14	20	22	8		50/165mm		
BH04	1.20	1.35	1.65	SPT	3	3	3	5	6	6	N=20		
BH04	2.00	2.15	2.45	SPT	2	3	4	4	5	5	N=18		
BH04	3.00	3.15	3.45	SPT	2	2	2	3	2	3	N=10		
BH04	4.00	4.14	4.25	SPT	13	12	27	23			25*/135mm 50/110mm		
BH05	1.30	1.32	1.35	CPT	25		50				25*/20mm 50/25mm		
BH06	1.20	1.35	1.65	SPT	1	1	2	3	3	3	N=11		
BH06	2.20	2.22	2.24	CPT	25		50		-		25*/15mm		
BH07	1.20	1.35	1.65	SPT	1	1	2	2	3	3	50/20mm N=10		
BH07	3.00	3.15	3.45	SPT	1	2	3	4	5	10	N=22		
BH07	4.00	4.02	4.04	CPT	25		50				25*/20mm 50/20mm		
BH08	1.20	1.35	1.65	SPT	1	2	3	4	4	5	N=16		
BH08	2.00	2.15	2.45	SPT	2	2	3	4	3	3	N=13		
BH08	3.00	3.15	3.45	SPT	3	8	9	11	14	12	N=46		
BH08	4.00	4.15	4.39	SPT	8	9	11	13	19	7	50/240mm		
BH09	1.20	1.35	1.65	SPT	1	1	2	2	2	3	N=9		
BH09	3.00	3.15	3.22	SPT	2	4	50				50/65mm		
BH09	3.50	3.52	3.54	CPT	25		50				25*/15mm 50/20mm		
BH10	2.00	2.15	2.45	SPT	3	3	3	3	5	5	N=16		
BH10	4.00	4.15	4.24	SPT	8	17	38	12			25*/145mm 50/95mm		
BH11	2.00	2.15	2.45	SPT	3	4	6	7	9	11	N=33		
BH11	4.00	4.15	4.45	SPT	5	6	8	10	10	11	N=39		
BH11	5.50	5.65	5.95	SPT	3	4	4	4	5	4	N=17		
BH11	7.00	7.15	7.45	SPT	2	1	2	2	2	3	N=9		
BH11	8.50	8.65	8.95	SPT	1	2	2	2	3	4	N=11		
BH11	11.50	11.65	11.95	SPT	3	4	4	5	5	5	N=19		
BH11	14.00	14.12	14.16	CPT	9	16	50				25*/120mm 50/40mm		
BH12	1.20	1.35	1.65	SPT	1	1	1	2	2	2	N=7		

Produced by the GEOtechnical DAtabase SYstem (GEODASY) (C) all rights reserved

Site

IAN FARMER ASSOCIATES

: Warren Hall Site - Broughton

Standard Penetration Test Results

Job Number

40274

2/2

Sheet

Client : Welsh Assembly Government
Engineer : Opus International Consultants (UK) Ltd

Borehole	ehole Base of Borehole Compared by the Base of Borehole Drive Drive (m) (m)		Test	Seatin	g Blows 75mm	Blows fo	r each 75	nm pene	tration	Result	Comme	nts	
Number	Borehole (m)	End of Seating Drive (m)	Drive (m)	Test Type	1	2	1	2	3	4	nesuit	Comme	1115
BH12	3.00	3.15	3.45	SPT	1	1	1	2	2	3	N=8		
BH12	5.00	5.15	5.45	SPT	1	2	2	3	3	3	N=11		
BH12	7.50	7.53	7.57	СРТ	25		50				25*/30mm 50/35mm		
BH13	2.00	2.15	2.45	SPT	4	5	5	6	6	7	N=24		
BH13	3.00	3.15	3.32	SPT	6	12	17	23	16		56/165mm		
BH13	4.00	4.09	4.19	СРТ	20	5	34	16			25*/85mm 50/100mm		
BH14	1.20	1.35	1.65	SPT	1	2	2	2	3	3	N=10		
BH14	3.00	3.03	3.05	СРТ	25		50				25*/25mm 50/20mm		
BH15	2.00	2.15	2.45	SPT	2	4	4	7	10	11	N=32		
BH15	3.00	3.15	3.45	SPT	7	10	12	12	12	14	N=50		
BH15	4.00	4.15	4.37	СРТ	11	13	15	17	18		50/220mm		
BH16	2.00	2.15	2.21	SPT	7	12	50				50/55mm		
BH17	1.20	1.35	1.65	SPT	1	1	2	2	2	3	N=9		
BH17	2.00	2.15	2.45	SPT	1	1	1	2	2	2	N=7		
BH17	3.00	3.15	3.45	SPT	1	1	2	2	2	3	N=9		
BH17	4.00	4.15	4.45	SPT	1	1	2	2	3	3	N=10		
BH17	5.00	5.15	5.45	SPT	1	1	2	2	2	2	N=8		
BH17	6.00	6.15	6.45	SPT	1	1	2	1	2	2	N=7		
BH17	7.50	7.65	7.95	SPT	1	3	3	4	5	5	N=17		
BH17	10.50	10.65	10.95	SPT	3	4	5	7	8	8	N=28		
BH17	12.00	12.15	12.44	SPT	5	7	9	12	15	14	50/290mm		
BH17	13.50	13.54	13.58	СРТ	25		50				25*/35mm 50/40mm		

Figure A2.7

Instrumentation Details

ASSOCIATES								Site Warren Hall Site - Broughton							
Installation	Туре		Dimensi	ons		Client Welsh Assembly Government							Job Number 40274		
			Location	1	OD) E	Engineer							Sheet		
								Opus Inter	national	Consulta	nts (UK)	Ltd			1/1
Vater State	Instr (A)	Level (mOD)	Depth (m)	Description			I	Gi	roundwa	iter Strik	es Durin	ng Drilling	9	I	
2				Concrete	Date	Time	Depth Struck (m)	Casing Depth (m)	Inflov	w Rate		Read	-	<u>.</u>	Depth Seale (m)
			0.30				(m)	(m)			5 min 10 min 15 min 20 m			20 min	(m)
								Gro	oundwat	er Obse	rvations	During D	Drilling		
					Date			Start of S		Watar		lift Wator	Wata		
						Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Water Level (mOD)	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Water Level (mOD
				Cement/Bentonite Grout											
								Instru	iment G	roundwa	ter Obse	ervations			
· · · · · · · · · · · · · · · · · · ·					Inst.	[A] Type	:								
						Ins	trument	[A]			Remarks				
					Date	Time	Depth (m)	Level (mOD)							
			3.00												
				Slotted Standpipe											
			3.50												
				Cement/Bentonite Seal											
			4.45												
Remarks				1	1			-							

			R M E K A T E S					Site Warren Ha	all Site - I	Broughto	n			1	Borehol Number BH02
Installatio	on Type		Dimensi	ons				Client Welsh Ass	sembly G	iovernme	nt				Job Numbei 40274
			Location		Ground	Level (m	OD) F	ngineer							Sheet
			2000000		around	20101 (Opus Inter	rnational	Consulta	nts (UK)	Ltd			1/1
Water Monte State	Instr (A)	Level (mOD)	Depth (m)	Description				Gi	roundwa	iter Strik	es Durin	ıg Drilling)		
			0.00	Concrete	Date	Time	Depth Struck (m)	Casing Depth (m)	Inflo	w Rate		Read	lings		Depti Seale (m)
			0.20		Date	Time		(m)	milov	w nate	5 min	10 min	15 min	20 min	
				Cement/Bentonite Grout			1.20								3.50
2,2,2,1			1.00					Gro	oundwat	er Obsei	rvations	During E	Drilling		
$\overline{\mathbf{c}}$								Start of Sl	hift				End of Sh	lift	
					Date	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Water Level (mOD)	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Wate Leve (mOD
				Slotted Standpipe											
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			3.00			1	1	Instru	ıment Gı	roundwa	ter Obse	ervations			1
2 2 9 2					Inst.	[A] Type	:								
0.0.0				Cement/Bentonite Seal		Ins	trument	[A]							
• • • • • • • • • • • • • • • • • • •					Date	Time	Depth (m)	Level (mOD)				Rem	arks		
Remarks			4.00	General Backfill											

ĬF	ASS	FAI OCI	R M E F A T E S	R G				Site Warren Ha	all Site - I	Broughto	'n			1	Borehol Number BH03
Installa	ation Type		Dimensi	ons				Client Welsh Ass	sembly G	lovernme	ent			ĭ	Job Number 40274
			Locatior	1	Ground	Level (m	OD)	Engineer Opus Inter	rnational	Consulta	ants (UK)	Ltd		5	Sheet 1/1
egend	Water (A)	Level (mOD)	Depth (m)	Description				G	roundwa	ater Strik	es Durin	ng Drilling	9		
				Concrete	Date	Time	Depth	Casing Depth (m)	Inflo	w Rate		Read	lings		Depth
			0.20		Date	Time	Depth Struck (m) 5.40	4.70			5 min 5.00	10 min 4.80	15 min 4.70	20 min 4.60	Depti Seale (m)
<u> </u>				Cement/Bentonite Grout											
				Gemen/Dentonite Grout											
								Gre	oundwat	ter Obse	rvations	During [Drilling		I
· · ·			1.50		_			Start of S				1	End of S		1
	0.000 0.0000 0				Date	Time	Deptl Hole (m)	h Casing Depth (m)	Water Depth (m)	Water Level (mOD)	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Wate Leve (mOD
<u>.</u>															
• <u>•</u> ••••••••••••••••••••••••••••••••••															
·····								Instru	ument Gi	roundwa	iter Obse	ervations	i		
<u>.</u>					Inst.	[A] Type	:								
·····					Date	Ins	trumen	t [A]				Rem	arks		
				Slotted Standpipe	Buto	Time	Deptl (m)	h Level (mOD)							
<u>.</u>															
······································															
·															
	∑ 1														
			6.00												

if		IAN ASS	FAI OCI	R M E K A T E S	2				Site Warren H	all Site - E	Broughto	n			1	Borehole Number BH10
Installa	tior	า Туре		Dimensi	ons				Client Welsh As	sembly G	iovernme	ent			ì	Job Number 40274
				Location	1	Ground	Level (m	OD)	Engineer Opus Inte	rnational	Consulta	ints (UK)	Ltd		\$	Sheet 1/1
Legend	Water	Instr (A)	Level (mOD)	Depth (m)	Description				G	roundwa	ter Strik	es Durin	g Drilling	9		
-	-		. ,		Concrete	Date	Time	Depth Struck (m)	Casing Depth (m)	Infloy	w Rate		Read	lings		Depth Sealed (m)
	¥ 1			0.30		Date	Time		(m)	milov		5 min	10 min		20 min	
	× 1							0.60 3.50	3.00			0.50 3.40	0.50 3.20	0.50 3.10	0.50 3.00	0.65
					Cement/Bentonite Grout											
······									Gr	oundwat	er Obse	rvations	During [Drilling		
······································				2.50					Start of S	hift				End of S	hift	
	V 2					Date	Time	Depti Hole (m)	h Casing Depth (m)	Water Depth (m)	Water Level (mOD)	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Water Level (mOD)
·····	V 2				Slotted Standpipe			(,			(1100)			(,	(,	
**************************************	¥2															
××××××××××××××××××××××××××××××××××××××				4.00	Gravel Filter											
× × × × × × × × × × × × × × × × × × ×				4.45												
× ×																
x x x x x x x x x x x x x x x x x x x									Instru	ument Gr	roundwa	iter Obse	ervations			
× × × × × × × × × × × × × × × × × × ×						Inst.	[A] Type	:								
× ×							Ins	trumen	t [A]				Rem	orko		
						Date	Time	Depti (m)	h Level (mOD)				nem	ains		
X X																
0000000																
<u></u>																
Remar	ks															

	COCI	R M E R A T E S					ite Warren Ha	all Site - I	Broughto	n			1	Borehole Number BH11
Installation Type		Dimensio					lient Welsh Ass	embly G	iovernme	nt				Job Number 40274
		Location		Ground	Level (m	OD) E	ngineer							Sheet
							Opus Inter	national	Consulta	nts (UK)	Ltd			1/1
egend × (A)	Level (mOD)	Depth (m)	Description		1		Gı	roundwa	iter Strik	es Durin	g Drilling	I		1
		0.30	Concrete	Date	Time	Depth Struck (m)	Casing Depth (m)	Infloy	w Rate		Read	ings		Depth Sealed (m)
			Cement/Bentonite Grout			(m)	(m)			5 min	10 min	15 min	20 min	- (m)
							Gro	oundwat	er Obsei	rvations	During D	orilling		
							Start of S	hift				End of Sh	.ift	
				Date	Time	Depth Hole (m)		Water Depth (m)	Water Level (mOD)	Time			Water Depth (m)	Water Level (mOD)
		4.50	Slotted Standpipe									()	()	
							Instru	iment Gi	roundwa	ter Obse	ervations			
		7.50		Inst.	[A] Type	:								
		8.50	Cement/Bentonite Seal		Ins	trument	[A]							
		0.50		Date	Time	Depth (m)	Level (mOD)				Rema	arks		
			General Backfill											

п Туре		ATES					Warren Ha	all Site - I	Broughto	n				Number BH12
		Dimensi	ons				Client Welsh Ass	sembly G	iovernme	nt			i	Job Number 40274
		Location	1	Ground	Level (m	OD) E	Engineer							Sheet
								rnational	Consulta	nts (UK)	Ltd			1/1
Instr	Level (mOD)	Depth (m)	Description				Gi	roundwa	ter Strik	es Durin	g Drilling	9		
	(1102)	(11)				Denth								Denth
		0.30		Date	Time	Struck (m)	Depth (m)	Inflov	w Rate	5 min	10 min	15 min	20 min	Depti Seale (m)
			Cement/Bentonite Grout			6.50		Slight s	eepage					
		1.00												
							Gro	oundwat	er Obsei	rvations	During D	Drilling		
													,ift	
				Start of Shift End of Shift Date Depth Time Depth Hole (m) Casing Depth (m) Water Depth (m) Water Level (mOD) Time Depth Hole (m) Casing Depth (m) Water Depth (m)									Wate Leve (mOD	
						(m)	(m)	(m)	(mOD)		(m)	(m)	(m)	(mÕD
			Slotted Standpipe											
							Instru	ument Gi	roundwa	ter Obse				
				Inst.	[A] Type	:								
					Ins	trument	[A]							
				Date	Time	Depth (m)	Level (mOD)				Rem	arks		
		5.00												
			Cement/Bentonite Seal											
		7 50												
		7.50												
:														
			0.30	Concrete 0.30 Cement/Bentonite Grout 1.00 Slotted Standpipe 5.00 Cement/Bentonite Seal	0.30 Concrete Date 0.30 Cement/Bentonite Grout Image: Concrete Grout Image: Concrete Grout 1.00 1.00 Filler Grout Image: Concrete Grout Image: Concrete Grout Image: Concrete Grout Image: Concrete Grout Image: Concrete Grout Image: Concrete Grout Image: Concrete Grout Image: Concrete Grout Image: Concrete Grout Image: Concrete Grout Image: Concrete Grout Image: Concrete Grout Image: Concrete Grout Grout Image: Concrete Grout Image: Concrete Grout Image: Concrete Grout Image: Concrete Grout Image: Concrete Grout Gr	Concrete Date Time 0.30 Cement/Bentonite Grout Image: Cement/Bentonite Grout	Image: line biase of the section o	Instruction Image: Concrete of the second seco	$ \underline{M}, $	Text Units Description Councele Date Time Openation Councele 1.00 0.30 Concrete Date Time 0.50 Concrete Slight seepage 1.00 1.00 Concrete Date Time 0.50 Councele Slight seepage 1.00 Slight seepage Date Time 0.50 Councele Slight seepage 1.00 Slight seepage Slight seepage Slight seepage Slight seepage Slight seepage 1.00 Slight seepage Slight seepage Slight seepage Slight seepage Slight seepage 1.00 Slight seepage Slight seepage Slight seepage Slight seepage Slight seepage 1.00 Slight seepage Slight seepage Slight seepage Slight seepage Slight seepage 1.00 Slight seepage Slight seepage Slight seepage Slight seepage Slight seepage 1.00 Slight seepage Slight seepage Slight seepage Slight seepage Slight seepage 1.00 Slight seepage Slight seepage Slight seepage	Image: Pick bit is a start of shift is a start of shif	0.30 Concrete cement/Bentonite Grout Date Time Beptity (min) Caling (min) Inflow Rate Teact 1.00 1.00 Cement/Bentonite Grout 1.00 1.00 Concrete 1.00 1.00 Concrete 1.00 1.00 Concrete Instrument [A] Instrument [A]	Instal Concrete Date Time Septe to formulater Strikes During Drilling 1.00 Concrete Date Time Septe to formulater Strikes During Drilling 1.00 1.00 Concrete Date Time Septe to formulater Strikes During Drilling 1.00 1.00 1.00 Sight seepage Image: Septe to formulater Strikes During Drilling 1.00 1.00 Sight seepage Image: Septe to formulater Strikes During Drilling 1.00 Sight seepage Image: Septe to formulater Strikes During Drilling Image: Septe to formulater Strikes During Drilling Sight seepage Image: Septe to formulater Strikes During Drilling Image: Septe to formulater Strikes During Drilling Sight seepage Image: Septe to formulater Strikes During Drilling Image: Septe to formulater Strikes During Drilling Sight seepage Image: Septe to formulater Strikes During Drilling Image: Septe to formulater Strikes During Drilling Sight seepage Image: Septe to formulater Strikes During Drilling Image: Septe to formulater Strikes During Drilling Image: Septe to formulater Strikes During Drilling Image: Septe to formulater Strikes During Drilling Image: Septe to formulater Str	Image: biology

P	ASS		R M E K A T E S					Site Warren Ha	all Site - E	Broughto	n			1	Borehole Number BH13
Installation	n Type		Dimensi	ons				Client Welsh Ass	sembly G	overnme	nt			ì	Job Number 40274
			Location	1	Ground	Level (m	OD) E	Engineer							Sheet
								Opus Inter	rnational	Consulta	nts (UK)	Ltd			1/1
Vater Vater	Instr (A)	Level (mOD)	Depth (m)	Description				Gi	roundwa	ter Strik	es Durin	g Drilling	9		
				Concrete	Date	Time	Depth Struck (m)	Casing Depth (m)	Infloy	v Rate		Read	lings		Depth Sealed (m)
			0.20				(m)	(m)			5 min	10 min	15 min	20 min	(m)
·····															
				Cement/Bentonite Grout											
· · · · · · · · · · · · · · · · · · ·								Gro	oundwat	er Obsei	vations	During D	Prilling		
					Date			Start of S					End of Sh		
					Date	Time	Depth Hole (m)	n Casing Depth (m)	Water Depth (m)	Water Level (mOD)	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Water Level (mOD)
			1.50												
								Instru	iment Gi	roundwa	ter Obse	ervations			
					Inst.	[A] Type	:								
						Ins	trument	t [A]				_			
				Slotted Standpipe	Date	Time	Depth (m)	Level (mOD)				Rema	arks		
			4.00												
			4.00	Coment/Dentent's Oral											
				Cement/Bentonite Seal											
			4.50												
								1							

if		IAN ASS	FAI OCI	R M E F A T E S	2				Site Warren H	all Site - I	Broughto	n			1	Borehole Number BH14
Installa	tion ⁻	Туре		Dimensi	ons				Client Welsh As	sembly G	lovernme	ent				Job Number 40274
				Locatior	ı	Ground	Level (m	OD)	Engineer Opus Inte	rnational	Consulta	unts (UK)	Ltd		:	Sheet 1/1
Legend	Water	Instr (A)	Level (mOD)	Depth (m)	Description				G	roundwa	ater Strik	es Durin	g Drilling	9		
	>	····	((,		_		Depth	Casing				Read	lings		Depth
	• •				Concrete	Date	Time	Depth Struck (m)	Casing Depth (m)	Inflo	w Rate	5 min	10 min		20 min	Depth Sealed (m)
				0.20				2.50	2.00			2.40	2.30	2.25	2.25	2.70
······································					Cement/Bentonite Grout				Gr	oundwat	ter Obse	rvations	During [Drilling		
· · · · · · · · · · · · · · · · · · ·									Start of S	hift			l	End of S	hift	
<u></u>						Date	Time	Deptl Hole (m)	h Casing Depth (m)	Water Depth (m)	Water Level (mOD)	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Water Level (mOD)
				1.00												
									Instru	ument G	roundwa	ter Obse	ervations			
••••••••••••••••••••••••••••••••••••••	0.0000000000000000000000000000000000000					Inst.	[A] Type									
· · · · · · · · · · · · · · · · · · ·					Slotted Standpipe	Date	Ins	trumen					Rem	arks		
							Time	Deptl (m)	h Level (mOD)							
	▼1			2.50	Cement/Bentonite Seal											
				3.00												

	FA F O C L	R M E K A T E S	2				Site Warren Ha	all Site - I	Broughto	n				Borehole Number BH15
estallation Type		Dimensi					Client Welsh Ass	embly G	iovernme	ent				Job Number 40274
		Location		Ground	Level (m	OD) E	Ingineer							Sheet
		Looution		around	20101 (11		Opus Inter	national	Consulta	nts (UK)	Ltd			1/1
gend A str (A)	Level (mOD)	Depth (m)	Description		1		Gr	oundwa	iter Strik	es Durin	g Drilling	9	·	I
		0.20	Concrete	Date	Time	Depth Struck (m)	Casing Depth (m)	Inflov	w Rate			lings		Depth Sealed (m)
										5 min	10 min	15 min	20 min	(m)
		1.50	Cement/Bentonite Grout			3.30	3.00			2.90	2.70	2.60	2.60	
							Gro	oundwat	er Obse	rvations	During [Drilling		
			Slotted Standpipe				Start of Sl	nift			I	End of SI	nift	
T 1				Date	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Water Level (mOD)	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Water Level (mOD
$ abla_1$		3.50												
			Cement/Bentonite Seal											
		4.50					Instru	ment G	roundwa	ter Obse	ervations			
				Inst.	[A] Type	:								
						trument	[A]							
				Date	Time	Depth (m)	Level (mOD)				Rem	arks		

FAI OCI	R M E F A T E S	2				i ite Warren Ha	all Site - I	Broughto	n			1	Borehole Number BH16
							sembly G	lovernme	ent			i	Job Number 40274
	Location	1	Ground	Level (m	OD) E	ngineer						5	Sheet
						Opus Inter	national	Consulta	ints (UK)	Ltd			1/1
Level (mOD)	Depth (m)	Description			I	Gi	roundwa	ter Strik	es Durin	g Drilling	9	I	
	0.20	Concrete	Data	Timo	Depth	Casing	Inflo	u Boto		Read	lings		Depth
	0.30	Cement/Bentonite Grout	Date	Time	(m)	(m)	ΙΠΠΟ	w Rate	5 min	10 min	15 min	20 min	Depth Seale (m)
		Slotted Standpipe	Date	Time		Start of S	hift		Time		End of Sh	nift Water Depth (m)	Wate Leve (mOD
						Instru	iment G	roundwa	ter Obse	ervations			
			Inst.			[A]							
			Date	Time						Rem	arks		
	6.00	Cement/Bentonite Seal											
	0 C I	OCIATES Dimensi Location	0.20 Concrete Cement/Bentonite Grout 0.30 Slotted Standpipe 6.00 6.00	Dimensions Ground Location Ground Location Description Date 0.20 Concrete 0.30 Concrete Cement/Bentonite Grout Date 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td>Dimensions Cround Level (m Location Ground Level (m Location Date Time 0.20 Concrete Cement/Bentonite Grout Date Time 0.10 0.20 Concrete Cement/Bentonite Grout Date Time 0.10 1 1 1 1 1 0.10 1</td><td>PARMER Dimensions Concrete Location Concrete 0.30 Concrete Date Time Depth 0.30 Concrete Date Time Depth Date Time Depth Time Depth Image: Solited Standpipe Inst. [A] Type : Inst. [A] Type : Inst. [A] Type : 6.00 6.00 Solited Standpipe Inst. [A] Type : Inst. [A] Type :</td><td>Warren Ha OCIATES Dimensions Client Welsh Ass: Cocation Ground Level (mOD) Engineer Opus Inter Upus Inter Location Description Image: Time Description Concrete Opus Inter 0.20 Concrete Cement/Bentonite Grout Date Time Depth (m) Cesing Cement/Bentonite Grout Date Start of S Start of S Date Time Depth (m) Cesing Cesing Slotted Standpipe Imat. [A] Type : Imat. (m) Inst. [A] Type : Imat. [A] 6.00 6.00 Imat. [A]</td><td>Warren Hall Site - I Dimensions Client Wetsh Assemby G Could Level (mOD) Engineer Opus International (h000) Description Ground Level (mOD) Engineer Opus International 0.20 Concrete Cement/Bentonite Grout Date Time Septith (m) Cassing (m) Intion 0.20 Concrete Cement/Bentonite Grout Date Time Septith (m) Cassing (m) Intion Groundwal Date Time Depth (m) Cassing (m) Waternational Slotted Standpipe Inst. [A] Type : Instrument [A] Date Time Depth (m) Cassing 6.00 6.00 Inst. [A] Type : Instrument [A]</td><td>Warren Hall Site - Broughto Client Welsh Assembly Governme Location Ground Level (mOD) Engineer Opus International Consulta 0.30 Concrete Cement/Bentonite Grout Date Time Septith (m) Conductor Strik 0.30 Concrete Cement/Bentonite Grout Date Time Septith (m) Conductor Strik 0.30 Sourcete Cement/Bentonite Grout Date Time Septith (m) Conductor Obse Date Time Septith (m) Conductor Obse Septith (m) Conductor Obse Date Time Peptith (m) Conductor Obse Septith (m) Septith (m) Septith (m) Slotted Standpipe Inst. [A] Type : Instrument [A] Instrument [A] 0.00 Source Conductor Condu</td><td>Warren Hall Site - Broughton Olinensions Client Welch Assembly Government Location Ground Level (mOD) Dimensions Client Welch Assembly Government Location Ground Level (mOD) Dimensions Ground Level (mOD) Dimensions Groundwater Strikes Durin 0.20 Concrete Coment/Benionite Grout Date Time Depth (m) Client Concrete (m) Groundwater Observations Start of Shift Date Time Depth (m) Client (m) Wareer Time Slotted Standpipe Inst. [A] Type : Instrument [A] Instrument [A] Date Time Depth (m) Level (m) Instrument [A] 6.00 6.00 Instrument [A] Instrument [A]</td><td>Warren Hall Site - Broughton Client Weish Assembly Government Location Ground Level (mOD) Engineer Opus International Consultants (UK) Ltd 1 Description Groundwater Strikes During Drilling (m) Groundwater Strikes During Drilling (m) 0.30 Concrete Cement/Bentonite Grout Date Time Bept to (m) Groundwater Observations During ID 0 0.30 Stotted Standpipe Date Time Protect Free (m) Groundwater Observations During ID Instrument Groundwater Observations During ID Instrument (A) Date Instrument (A) Date Instrument (A) Groundwater Observations Instrument (A) Date Instrument (A) Groundwater Observations Instrument (A) Date Instrument (A) Groundwater Observations Instrument (A) Date Instrument (A) Date Instrument (A) Groundwater Observations</td><td>Waren Hall Site - Broughton Client Wetsh Assembly Government Location Ground Level (mOD) Engineer Opus International Consultants (UK) Ltd 0.200 Concrete Comment/Bentonite Grout Date Time Bopth Both (m) Intlow Rate Readings 0.301 Concrete Comment/Bentonite Grout Date Time Bopth Both (m) Intlow Rate Readings 0.302 Concrete Comment/Bentonite Grout Date Time Bopth Both (m) Intlow Rate State of Shift 0.303 Stotled Standpipe Date Time Readings (m) Groundwater Observations During Drilling Instrument (A) Date Instrument (A) Time Instrument (A) (m) Instrument Groundwater Observations Instrument (A) Date Time Condition Instrument (A) (m) Remarks 6.001 6.001 Instrument (A) Instrument (A) Remarks</td><td>Waren Hall Site - Broughton Dimensions Citent Welsh Assembly Government Location Ground Level (mOD) Engineer Opus International Consultants (UK) Ltd Concrete Opus International Consultants (UK) Ltd 0.20 0.30 Cenerete Ceneret/Bentonite Grout Date Time Signify 0.30 Readings Signify 0.30 Cenerete Ceneret/Bentonite Grout Date Time Date Time Signify 0.30 Ceneret/Bentonite Grout Date Time Signify Mater Time Optitin (Mater) Instrument Groundwater Observations During Offling Instrument Groundwater Observations Instrument [A] Dete Instrument [A] Bentarks</td></t<>	Dimensions Cround Level (m Location Ground Level (m Location Date Time 0.20 Concrete Cement/Bentonite Grout Date Time 0.10 0.20 Concrete Cement/Bentonite Grout Date Time 0.10 1 1 1 1 1 0.10 1	PARMER Dimensions Concrete Location Concrete 0.30 Concrete Date Time Depth 0.30 Concrete Date Time Depth Date Time Depth Time Depth Image: Solited Standpipe Inst. [A] Type : Inst. [A] Type : Inst. [A] Type : 6.00 6.00 Solited Standpipe Inst. [A] Type : Inst. [A] Type :	Warren Ha OCIATES Dimensions Client Welsh Ass: Cocation Ground Level (mOD) Engineer Opus Inter Upus Inter Location Description Image: Time Description Concrete Opus Inter 0.20 Concrete Cement/Bentonite Grout Date Time Depth (m) Cesing Cement/Bentonite Grout Date Start of S Start of S Date Time Depth (m) Cesing Cesing Slotted Standpipe Imat. [A] Type : Imat. (m) Inst. [A] Type : Imat. [A] 6.00 6.00 Imat. [A]	Warren Hall Site - I Dimensions Client Wetsh Assemby G Could Level (mOD) Engineer Opus International (h000) Description Ground Level (mOD) Engineer Opus International 0.20 Concrete Cement/Bentonite Grout Date Time Septith (m) Cassing (m) Intion 0.20 Concrete Cement/Bentonite Grout Date Time Septith (m) Cassing (m) Intion Groundwal Date Time Depth (m) Cassing (m) Waternational Slotted Standpipe Inst. [A] Type : Instrument [A] Date Time Depth (m) Cassing 6.00 6.00 Inst. [A] Type : Instrument [A]	Warren Hall Site - Broughto Client Welsh Assembly Governme Location Ground Level (mOD) Engineer Opus International Consulta 0.30 Concrete Cement/Bentonite Grout Date Time Septith (m) Conductor Strik 0.30 Concrete Cement/Bentonite Grout Date Time Septith (m) Conductor Strik 0.30 Sourcete Cement/Bentonite Grout Date Time Septith (m) Conductor Obse Date Time Septith (m) Conductor Obse Septith (m) Conductor Obse Date Time Peptith (m) Conductor Obse Septith (m) Septith (m) Septith (m) Slotted Standpipe Inst. [A] Type : Instrument [A] Instrument [A] 0.00 Source Conductor Condu	Warren Hall Site - Broughton Olinensions Client Welch Assembly Government Location Ground Level (mOD) Dimensions Client Welch Assembly Government Location Ground Level (mOD) Dimensions Ground Level (mOD) Dimensions Groundwater Strikes Durin 0.20 Concrete Coment/Benionite Grout Date Time Depth (m) Client Concrete (m) Groundwater Observations Start of Shift Date Time Depth (m) Client (m) Wareer Time Slotted Standpipe Inst. [A] Type : Instrument [A] Instrument [A] Date Time Depth (m) Level (m) Instrument [A] 6.00 6.00 Instrument [A] Instrument [A]	Warren Hall Site - Broughton Client Weish Assembly Government Location Ground Level (mOD) Engineer Opus International Consultants (UK) Ltd 1 Description Groundwater Strikes During Drilling (m) Groundwater Strikes During Drilling (m) 0.30 Concrete Cement/Bentonite Grout Date Time Bept to (m) Groundwater Observations During ID 0 0.30 Stotted Standpipe Date Time Protect Free (m) Groundwater Observations During ID Instrument Groundwater Observations During ID Instrument (A) Date Instrument (A) Date Instrument (A) Groundwater Observations Instrument (A) Date Instrument (A) Groundwater Observations Instrument (A) Date Instrument (A) Groundwater Observations Instrument (A) Date Instrument (A) Date Instrument (A) Groundwater Observations	Waren Hall Site - Broughton Client Wetsh Assembly Government Location Ground Level (mOD) Engineer Opus International Consultants (UK) Ltd 0.200 Concrete Comment/Bentonite Grout Date Time Bopth Both (m) Intlow Rate Readings 0.301 Concrete Comment/Bentonite Grout Date Time Bopth Both (m) Intlow Rate Readings 0.302 Concrete Comment/Bentonite Grout Date Time Bopth Both (m) Intlow Rate State of Shift 0.303 Stotled Standpipe Date Time Readings (m) Groundwater Observations During Drilling Instrument (A) Date Instrument (A) Time Instrument (A) (m) Instrument Groundwater Observations Instrument (A) Date Time Condition Instrument (A) (m) Remarks 6.001 6.001 Instrument (A) Instrument (A) Remarks	Waren Hall Site - Broughton Dimensions Citent Welsh Assembly Government Location Ground Level (mOD) Engineer Opus International Consultants (UK) Ltd Concrete Opus International Consultants (UK) Ltd 0.20 0.30 Cenerete Ceneret/Bentonite Grout Date Time Signify 0.30 Readings Signify 0.30 Cenerete Ceneret/Bentonite Grout Date Time Date Time Signify 0.30 Ceneret/Bentonite Grout Date Time Signify Mater Time Optitin (Mater) Instrument Groundwater Observations During Offling Instrument Groundwater Observations Instrument [A] Dete Instrument [A] Bentarks

$\begin{bmatrix} \mathbf{P} & \mathbf{I} \mathbf{A} \mathbf{N} \\ \mathbf{A} \mathbf{S} \mathbf{S} \end{bmatrix}$	FAR Soci	R M E K A T E S					Site Warren Ha	all Site - I	Broughto	'n				Boreho Numbei BH17
nstallation Type		Dimensi					Client Welsh Ass	sembly G	iovernme	ent			,	Job Numbe 40274
	-	Location	•	Ground	Level (m		Engineer							Sheet
a Instr	Loval	Donth					Opus Inter							1/1
egend A area (A)	Level (mOD)	Depth (m) 0.20	Description Concrete		1			roundwa	iter Strik	es Durin				
		0.20	Concrete	Date	Time	Depth Struck (m)	Casing Depth (m)	Inflov	w Rate	5 min		lings 15 min	20 min	Dep Seal (m
			Cement/Bentonite Grout			2.40	2.30			2.20	2.10	2.10	2.10	8.50
 ▼1 ∑1		2.50												
							Gro	oundwat	er Obse	rvations	During [Drilling		
							Start of S	hift				End of SI	hift	
			Slotted Standpipe	Date	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Water Level (mOD)	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Wate Leve (mO
		7.50												
							Instru	ument Gi	roundwa	iter Obse	ervations	 ;		
				Inst.	[A] Type	:								
					Ins	trument	[A]				_			
			Cement/Bentonite Seal	Date	Time	Depth (m)	Level (mOD)				Rem	arks		
		13.50												
emarks														

APPENDIX 3

LABORATORY TESTS

Geotechnical & Environmental Specialists

14 Faraday Close, District 15, Pattinson North Industrial Estate, Washington, Tyne & Wear, NE38 8QJ. Tel. 0191 4166375 Fax. 0191 4191578 Email. lab@ifawashington.co.uk Internet.www.ianfarmerassociates.co.uk

Ian Farmer Associates (1998) Ltd 17 Rivington Court Warrington Cheshire WA1 4RT

F.A.O. Mr A Latimer

TEST REPORT - 40274/1

Site :	Warren Hall Site - Broughton
Job Number :	40274
Originating Client :	Welsh Assembly Government
Originating Reference :	40274
Date Sampled :	Not Given
Date Scheduled :	22.01.08
Date Testing Started :	24/1/08
Date Testing Finished :	31/1/08
Remarks :	 First Report for above Job Number Samples will be disposed of 28 days after the report is issue unless otherwise agreed This report may contain results from tests which are not included within the scope of the UKAS accreditation. Please see final sheet for details.

J.M. Jones

Authorised By:

Position:

Senior Materials Engineer

Date : 31/1/08

Ian Farmer Associates (1998) Limited. Registered in England and Wales No. 3661447 Registered Office: Unit 1, Bamburgh Court, TVTE, Gateshead, Tyne & Wear, NE11 0TX Offices in: Coventry (02476) 456565. Harpenden, Herts. (01582) 460018. Truro (01827) 261775 Warrington (01925) 855440. Newcastle upon Tyne (0191) 4828500. Motherwell (01698) 230231.

Page 1 of 13

GS ASSOCIATION OF GEOTECHNICAL &

Site

: Warren Hall Site - Broughton

Client : Welsh Assembly Government

Laboratory Test Report - 40274/1

Job Number 40274

Page 2 / 13

Bercholder Frault Description TPOS TPOS 180 200 D1 211 15 16 Brown slightly sarvely cluY Second Law Second					DETERMINATION OF MOISTURE CONTENT	
Method of Preparation : ES 1377:PART 1:1900-7:3.3 Preparation of samples for classification tests	Borehole/ Trial Pit	Depth (m)	Sample	Moisture Content %	Description	
	TP05 TP06 TP08	1.80 0.50 2.00	D11 D2 D11	15 18 16	Brown Sightly gravelly CLAY Brown Sandy CLAY	
Method of Test : BS 1377:PART 2:1990:3.2 Determination of oven dried moisture content	Method of	Preparation	: BS 1377:F	PART 1:1990:	7.3.3 Preparation of samples for classification tests	
	Method of	Test	: BS 1377:F	PART 2:1990:	3.2 Determination of oven dried moisture content	

Client : Welsh Assembly Government

Job Number 40274

Page

3/13

DETERMINATION OF MOISTURE CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY AND LIQUIDITY INDEX

	De ti		Natural	Natural	Sample 425µm	Passing Sieve	Liquid	Plastic	Plasticity	11		
orehole/ Trial Pit	Depth (m)	Sample	/ Sieved	Moisture Content %	Percentage %	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index %	Liquidity Index	Class	Description / Remarks
P05	1.80	D11	Natural	15	82	18	38	20	18	-0.11	CI	Brown slightly sandy slightly gravelly CLAY
P06	0.50	D2	Natural	18	85	20		NP				Brown CLAY / SAND
P08	2.00	D11	Natural	16	95	17	23	13	10	0.40	CL	Brown sandy CLAY

: Welsh Assembly Government

Laboratory Test Report - 40274/1

Job Number

Page

Sieve /

Particle Size

200 mm

150 mm

125 mm

90 mm

75 mm

63 mm

50 mm

37.5 mm

28 mm

20 mm

14 mm

10 mm

6.3 mm

3.35 mm

1.18 mm

600 µm

425 µm

300 µm

212 µm

150 µm

63 µm

20 µm

6 µm

2 µm

5 mm

2 mm

%

Passing

100

100

100

100

100

100

100

100

90

87

80

74

65

61

57

54

51

48

43

35

28

23

16

10

7

5

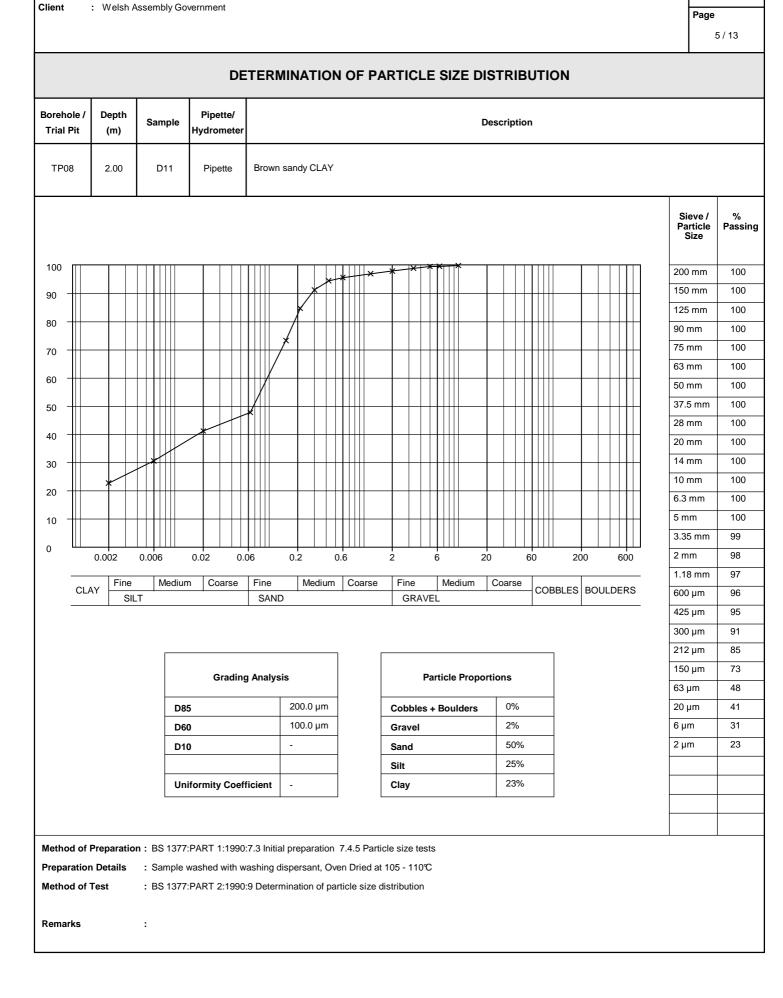
40274

4/13

Client

Site

DETERMINATION OF PARTICLE SIZE DISTRIBUTION Borehole Depth Pipette/ Sample Description Trial Pit (m) Hydrometer TP05 0.30 Β4 Pipette Brown gravelly CLAY / SAND 100 90 80 70 60 50 40 30 20 10 0 0.002 0.02 0.006 0.06 0.2 0.6 2 20 60 200 600 6 Medium Coarse Fine Medium Coarse Medium Coarse Fine Fine CLAY COBBLES BOULDERS SILT SAND GRAVEL **Grading Analysis Particle Proportions** 18.1 mm 0% D85 Cobbles + Boulders 4.5 mm 46% Gravel D60 20.0 µm 38% D10 Sand 10% Silt **Uniformity Coefficient** 226.2 Clay 5% Method of Preparation : BS 1377: PART 1:1990:7.3 Initial preparation 7.4.5 Particle size tests **Preparation Details** : Sample washed with washing dispersant, Oven Dried at 105 - 110°C Method of Test : BS 1377:PART 2:1990:9 Determination of particle size distribution Remarks :



Site

Laboratory Test Report - 40274/1

Job Number 40274

: Warren Hall Site - Broughton

Site

IAN FARMER ASSOCIATES

: Warren Hall Site - Broughton

Laboratory Test Report - 40274/1

Job Number 40274

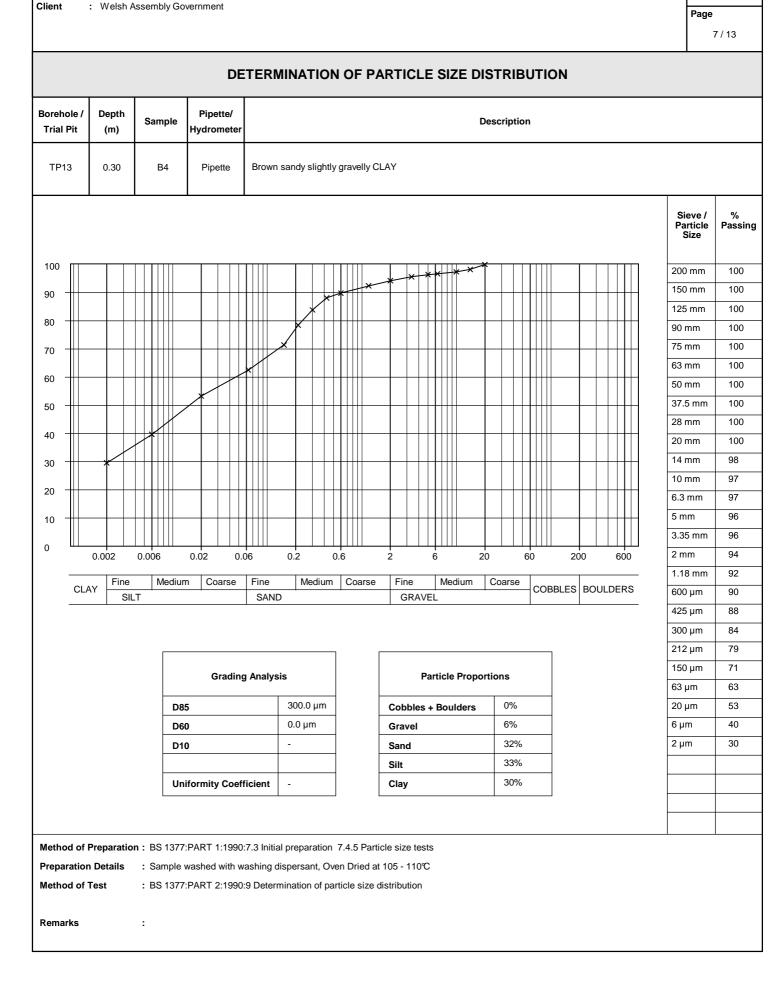
6/13

Page

Client : Welsh Assembly Government

orehole / Trial Pit	Depth (m)	Sample	Pipette/ Hydrometer						De	escription	1					
TP12	2.20	B11	N/A	Brown	slightly sand	y gravelly C	LAY									
		I	1												Sieve / Particle Size	% Passin
100											T				200 mm	100
эо 📗															150 mm	100
50								X							125 mm	100
30								×							90 mm	100
70				$\left \left \left \right \right \right $			+				$\left \left \left \right \right \right =$			$\parallel \mid$	75 mm	100
							\mathbf{k}								63 mm	100
50															50 mm	100
50				$\left \right \left \right $		/						_			37.5 mm	100
															28 mm	100
0															20 mm	100
80 +				$\left \right \left \right \left \right $		1									14 mm	98
															10 mm	94
20					*										6.3 mm	86
10				r III											5 mm	81
															3.35 mm	74
) Ш	0.002	0.006	0.02 0.0	06	0.2	0.6	2	6	20) 6	50	200	60	00	2 mm	63
	Fine	Mediur	n Coarse	Fine	Medium	Coarse	Fine	Me	dium	Coarse					1.18 mm	50
CL4	SIL	T		SANE	>	1		VEL			COBBL	ES BO	ULDEF		600 µm	36
															425 µm	32
															300 µm	27
						7									212 µm	23
			Grading	g Analys	is			Particle	Proport	tions					150 µm	20
						-									63 µm	14
		D8			6.0 mm	-		es + Bou	ders	0%						
		D6			1.8 mm	-	Gravel			37%						
		D1	0		-	-	Sand			48%						
						-	Silt/Cla	iy		15%						
		Un	iformity Coeff	licient	-											
			:PART 1:1990													
reparatior	Details		washed with w													
lethod of	Test	: BS 1377	:PART 2:1990	:9 Deterr	mination of pa	article size	distributio	n								

Laboratory Test Report - 40274/1


Job Number

40274

Client

Site

: Warren Hall Site - Broughton

Laboratory Test Report - 40274/1

Job Number

Page

40274

8/13

Client

Site

: Warren Hall Site - Broughton : Welsh Assembly Government

orehole / Trial Pit	Depth (m)	Sample	Pipette/ Hydrometer									ſ	Descri	iptic	n								
TP15	2.70	B13	Pipette	Brown	slightly san	וdy gו	rave	əlly CL	.AY														
			1																			Sieve / Particle Size	% Pase
100						ΠT	Π	1		$\top \top \uparrow$	ΤΓ		\square		ÍΠ						٦	200 mm	10
90 		,		_		ı	Щ	μ	\downarrow	+++		**	**	*	Щ	Щ	I	\downarrow	\parallel	Щ	_	150 mm	10
									* *	+**	1											125 mm	10
0		, + 			* * * *	***	11	*	Î	\square	\parallel	it	\square	+	I			\uparrow				90 mm	10
o - -		,+++++++		+++++		⊢┼┼	+++	⊢	++	+++	\mathbb{H}	;├──	++	\downarrow	\parallel	++	<u> </u>	+	+	\mathbb{H}	-	75 mm	10
			1					1									1					63 mm	10
) -							\prod	i			\square	i T		\square				\square			1	50 mm	10
> ╢─		· 	-+++	$\frac{1}{10000000000000000000000000000000000$		⊢┼┼	+++	i 	++	+++	++	╟───	++	+	+	+++		++	+	H	-	37.5 mm	92
. III						ιЦ		1				II										28 mm	92
, 11-							\prod	i T		\square	\prod	I		T							1	20 mm	91
,	+	,4+++++-		$\frac{1}{1}$		⊢┼┼	+++	H—	++	+++	++	H	++	+	H	+++		+	+	H	-	14 mm	90
、 Ш																	L					10 mm	89
)				TIII				i T				I I										6.3 mm	86
> ╢─	-++	· -		$\frac{1}{10000000000000000000000000000000000$		\vdash	₩	<u> </u>	++	+++	++	H	+	+	\mathbb{H}	++		+	+	\mathbb{H}	-	5 mm	85
										Ш							L					3.35 mm	84
	0.002	0.006	0.02 0	.06	0.2	0.6	;		2	6	-	2	20		60		2	00	- 6	600		2 mm	82
	Fine	Mediur	m Coarse	Fine	Mediu	um	Co	arse	Fine	\neg	Me	edium	Coa	arse	T.			Τ			_	1.18 mm	
CLA	SIL			SAND		<u> </u>				AVEL						;OB	BLES	BOL	JLDE	ERS	S	600 µm	80
-																					_	425 µm	79
																						300 µm	79
								Г														212 µm	79
			Gradir	ig Analys	is					Par	ticle	e Propo	ortion	s								150 µm	78
								Ļ														63 µm	78
		D8	35]	5.0 mm			Ļ	Cobble	es + l	Bou	Iders		0%			4					20 µm	66
		D6	<i>j</i> 0]	0.0 µm			Ļ	Grave	4				18%								6 µm	36
		D1	0		-			Ļ	Sand					5%			1					2 µm	22
]	I			Ļ	Silt					55%			1						
		Un	niformity Coef	ficient	-				Clay				1	22%	1								

:

 $\label{eq:preparation Details : Sample washed with washing dispersant, Oven Dried at 105 - 110 \end{tabular}$: BS 1377:PART 2:1990:9 Determination of particle size distribution

Method of Test

Remarks

: Welsh Assembly Government

Site

Client

Laboratory Test Report - 40274/1

Job Number 40274

70214

Page

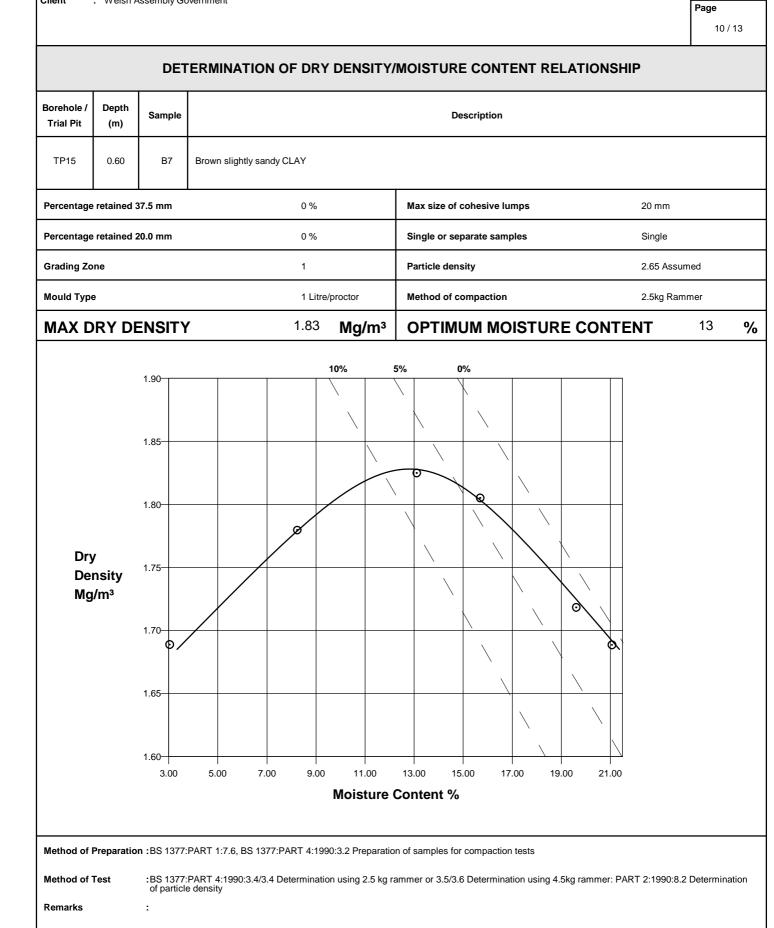
9/13

DETERMINATION OF THE pH VALUE AND THE SULPHATE CONTENT OF SOIL AND GROUNDWATER

	1		Concentr	ation of Solubl	e Sulphate	Percentage		
Borehole/ Trial Pit	Depth (m)	Sample	S Total S04	oil S04 in 2:1	Groundwater g /l	Percentage of sample passing 2mm Sieve %	pН	Description / Remarks
marrit	(11)		%	S04 in 2:1 water:soil g /l	g /i	%	-	
TP05	0.30	D5		<0.1		25	7.4	Brown gravelly CLAY / SAND
TP06	0.50	D2		<0.1		56	4.8	Brown CLAY / SAND
TP08	0.40	D5		0.1		47	6.9	Brown sandy slightly gravelly CLAY
TP12	0.20	B1		0.1		49	6.8	Brown sandy CLAY
TP13	0.30	D5		0.1		27	7.1	Brown sandy CLAY
TP15	0.60	B7		<0.1		100	8.2	Brown slightly sandy CLAY
	·							
Method	of Prepara	tion : B	5 1377:PART	1:1990:7.5 Pr	eparation of so	oil for chemica	I tests BS	1377:PART 3:1990:5.2, 5.3, 5.4 & 9.4
Method	of Test	: B	S 1377:PART	3:1990:5 Dete	ermination of th	ne sulphate co	ntent of soi	il and ground water BS 1377:PART 3:1990:9 Determination of the pH value

Site

IAN FARMER ASSOCIATES


: Warren Hall Site - Broughton

Laboratory Test Report - 40274/1

Job Number

40274

Client : Welsh Assembly Government

Laboratory Test Report - 40274/1

Job Number

40274

Site

Client	: Welsh As	ssembly Go	overnment																	Page	
																					1 / 13
			DE	TERMI	NAT	ION (DF C	ALII	FOR	NIA	BEA	RINC	G RA	TIO	(CBI	२)				<u> </u>	
Borehole / Trial Pit	Depth (m)	Sample	% Passing 20 mm Sieve									Des	scriptio	on							
TP13	0.70	B7	99 %	Brown sa	andy Cl	LAY															
Moisture C	ontent %																				
Bulk Densi	ty Mg/m³	0.	00	1.50																	
Dry Density	y Mg/m³	0.	00																		
Soaked Te	st	N	lo	1.35)	
 				1.20]	
Test on		_	OP												0						
Moisture C		1	8	1.05										0							
Surcharge		0.5	5.0	<u> </u>								0									
Penetration	n mm	2.5	5.0	er (kN							0										
Force kN Corrected	CBR %	0.60 4.6	0.99 4.9	0.90 Poad on plunder (KN) Coad on blunder]									
		4.0	4.5	uo p					0												
Test on		О ВОТ	ТОМ	9 0.60				0]											
Moisture C	ontent %		5	0.45																	
Surcharge	weight kg					0															
Penetratior		2.5	5.0	0.30																	
Force kN		0.74	1.1	0.15																	
Corrected	CBR %	5.6	5.4		Ы																
				0.00	00 0.5	50 1.0	0 1.5	50 2.0	00 2.	50 3.0	00 3.9	50 4.0	00 4.	50 5.	00 5.	50 6.	00 6.	50 7.	00 7.5	50 8.0	0
Test on		TOP	воттом											jer (mr							
Reported C	BR %	4.9	5.6																		
Mean CBR	%	5	.2																		
Method of	Preparation	1: The spe	cimen was 7:PART 1:1	prepared b	by Dyna Genera	amic co	mpres	sion u	sing a	2.5 kg	Ramm	er BS 1'	377·P4	RT 4.1	990.7	2 Pren	aration	of test	sampl	e	
Method of	Test		7:PART 4:1							g ia		20 1			500.7.	op	aration		. oumpr	~	
Remarks		:																			

Laboratory Test Report - 40274/1

Job Number 40274

Page

Site

: Warren Hall Site - Broughton

Client : Welsh Assembly Government

			DE	TERMI					FUR		DEA		9 KA		(CB	K)				
Borehole / Trial Pit	Depth (m)	Sample	% Passing 20 mm Sieve									Des	scriptio	on						
TP15	0.60	B7	99 %	Brown sl	ightly s	andy (CLAY													
Moisture C	ontent %																			
Bulk Densi	y Mg/m³	2.	11	1.50											<u> </u>					
Dry Density	∕ Mg/m³	1.	78																	
Soaked Tes	st	N	10	1.35)
Test on		П то	OP	1.20																
	ontent %		9) _ (^ا ت	╞╜╴		
Moisture Content %			40	1.05												╞╹╵	-			
Penetration		2.5	5.0	z ^{0.90}								0		╞╹╵	ľ—					
Force kN		0.60	0.97	nger (l									₽ <u> </u>							
Corrected	CBR %	4.5	4.9	Constant (Constant) (C					0											
				6 0.60				ļ ,												
Test on		О ВОТ	ТОМ					0												
Moisture C	ontent %	1	8	0.45			01	Ψ□												
Surcharge			40	0.30		- OF														
Penetratior	mm	2.5	5.0		¢	$^{\circ}$	Γ													
Force kN		0.71	1.1	0.15						<u> </u>										
Corrected (JBR %	5.4	5.3	0.00																
		1	DOTTOM		00 0.5	50 1.	00 1	.50 2	.00 2.				00 4. Fplung			.50 6	.00 6.	.50 7.	00 7.	50 8.0
		TOP	B() I ()M							Р	enetra	1011 01	piung	lei (ii)i	1)					
Test on	BR %	TOP 4.9	BOTTOM																	
		4.9	5.4																	

Test Report :

40274/1

Site : Job Number : Originating Client : Warren Hall Site - Broughton 40274 Welsh Assembly Government

All opinions and interpretations contained within this report are outside of our Scope of Accreditation.

The following tests contained within this report are not UKAS Accredited.

Date of Issue :

31/1/08

Geotechnical & Environmental Specialists

14 Faraday Close, District 15, Pattinson North Industrial Estate, Washington, Tyne & Wear, NE38 8QJ. Tel. 0191 4166375 Fax. 0191 4191578 Email. lab@ifawashington.co.uk Internet.www.ianfarmerassociates.co.uk

Ian Farmer Associates (1998) Ltd 17 Rivington Court Warrington Cheshire WA1 4RT

F.A.O. Mr A Latimer

TEST REPORT - 40274A/1

Site :	Warren Hall, Broughton, Chester
Job Number :	40274A
Originating Client :	OPUS
Originating Reference :	40274A
Date Sampled :	Not Given
Date Scheduled :	16.01.08
Date Testing Started :	4/2/08
Date Testing Finished :	8/2/08
Remarks :	 First Report for above Job Number Samples will be disposed of 28 days after the report is issue unless otherwise agreed

• This report may contain results from tests which are not included within the scope of the UKAS accreditation. Please see final sheet for details.

J.M. Jones

Authorised By:

Position:

Senior Materials Engineer

Date : 8/2/08

Ian Farmer Associates (1998) Limited. Registered in England and Wales No. 3661447 Registered Office: Unit 1, Bamburgh Court, TVTE, Gateshead, Tyne & Wear, NE11 0TX Offices in: Coventry (02476) 456565. Harpenden, Herts. (01582) 460018. Truro (01827) 261775 Warrington (01925) 855440. Newcastle upon Tyne (0191) 4828500. Motherwell (01698) 230231.

Page 1 of 6

Site : Warren Hall, Broughton, Chester

Client : OPUS

Laboratory Test Report - 40274A/1

Job Number 40274A

Page 2 / 6

				DETERMINATION OF MOISTURE CONTENT	
Borehole/ Trial Pit	Depth (m)	Sample	Moisture Content %	Description	
TP07 TP10	1.50 2.50	D4 D9	16 19	Brown slightly sandy gravelly CLAY Brown slightly sandy slightly gravelly CLAY	
Method of Method of Remarks				7.3.3 Preparation of samples for classification tests 3.2 Determination of oven dried moisture content	

Site : Warren Hall, Broughton, Chester

Client : OPUS

Laboratory Test Report - 40274A/1

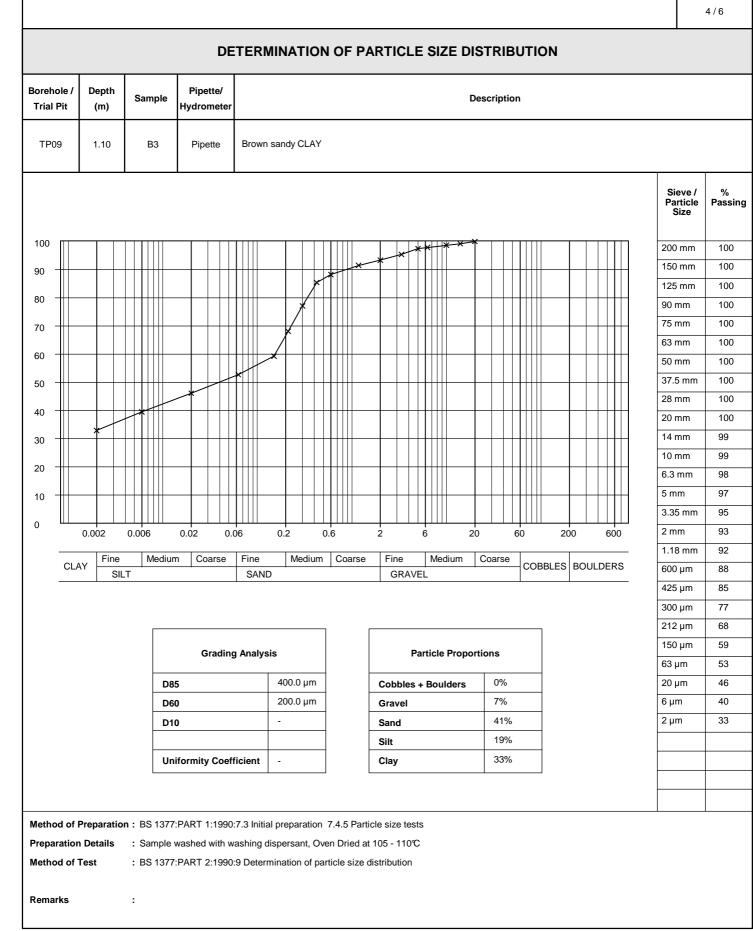
Job Number 40274A

Page

3/6

DETERMINATION OF MOISTURE CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY AND LIQUIDITY INDEX

Devek-1-1	Denth		Natural	Natural	Sample 425µm	Passing Sieve	Liquid	Plastic	Plasticity	Linudatte		
Borehole/ Trial Pit	Depth (m)	Sample	/ Sieved	Moisture Content %	Percentage %	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index %	Liquidity Index	Class	Description / Remarks
P07	1.50	D4	Natural	16	95	17	29	16	13	0.08	CL	Brown slightly sandy gravelly CLAY
P10	2.50	D9	Natural	19	84	22	30	16	14	0.43	CL	Brown slightly sandy slightly gravelly CLAY
lethod	of Prepara	tion : B	S 1377:P/	ART 1:199	0:7.4 Prepa	ration of sa	mples for c	assification	tests BS 1	377:PART	2:1990:4	1.2 & 5.2 Sample preparations
ethod (of Test	: B	S 1377:P/	ART 2:199	0:3.2 Deterr	nination of	moisture co	ontent 4.3 D	eterminatio	n of the lia	uid limit	5.3 Determination of the plastic limit and


IAN FARMER ASSOCIATES

Site : Warren Hall, Broughton, Chester

Client : OPUS

1021

Page

Laboratory Test Report - 40274A/1

Site : Warren Hall, Broughton, Chester

Client

Job Number 40274A

: OPUS Page 5/6 DETERMINATION OF THE pH VALUE AND THE SULPHATE CONTENT OF SOIL AND GROUNDWATER Concentration of Soluble Sulphate Percentage of sample passing 2mm Sieve % Soil Borehole/ Trial Pit Depth (m) Groundwater g /l Sample pН **Description / Remarks** Total S04 S04 in 2:1 water:soil g /l % TP11 1.00 D4 0.1 96 7.6 Brown slightly gravelly CLAY Method of Preparation : BS 1377:PART 1:1990:7.5 Preparation of soil for chemical tests BS 1377:PART 3:1990:5.2, 5.3, 5.4 & 9.4 Method of Test : BS 1377:PART 3:1990:5 Determination of the sulphate content of soil and ground water BS 1377:PART 3:1990:9 Determination of the pH value

Test Report :

40274A/1

Site : Job Number : Originating Client : Warren Hall, Broughton, Chester 40274A OPUS

All opinions and interpretations contained within this report are outside of our Scope of Accreditation.

The following tests contained within this report are not UKAS Accredited.

Date of Issue :

8/2/08

Geotechnical & Environmental Specialists

14 Faraday Close, District 15, Pattinson North Industrial Estate, Washington, Tyne & Wear, NE38 8QJ. Tel. 0191 4166375 Fax. 0191 4191578 Email. lab@ifawashington.co.uk Internet.www.ianfarmerassociates.co.uk

Ian Farmer Associates (1998) Ltd 17 Rivington Court Warrington Cheshire WA1 4RT

F.A.O. Mr A Latimer

TEST REPORT - 40274C/1

Job Number : 40274C

Originating Client : Welsh Assembly Government

Originating Reference : 40274C

Date Sampled : Not Given

Date Scheduled : 25.01.08

Date Testing Started : 1/2/08

Date Testing Finished : 20/2/08

Remarks :

- First Report for above Job Number
- Samples will be disposed of 28 days after the report is issue unless otherwise agreed
- This report may contain results from tests which are not included within the scope of the UKAS accreditation. Please see final sheet for details.

J.M. Jones

Position :

Authorised By:

Senior Materials Engineer

Date : 20/2/08

Ian Farmer Associates (1998) Limited. Registered in England and Wales No. 3661447 Registered Office: Unit 1, Bamburgh Court, TVTE, Gateshead, Tyne & Wear, NE11 0TX Offices in: Coventry (02476) 456565. Harpenden, Herts. (01582) 460018. Truro (01827) 261775 Warrington (01925) 855440. Newcastle upon Tyne (0191) 4828500. Motherwell (01698) 230231.

Page 1 of 29

: Welsh Assembly Government

Laboratory Test Report - 40274C/1

Job Number 40274C

Page 2 / 29

PersonalPersonalSamoleVerticeDescriptionBiblingSimoleSimoleSimoleSimoleSimoleSimoleBiblingSimoleSimoleSimoleSimoleSimoleSimoleBiblingSimoleSimoleSimoleSimoleSimoleSimoleBiblingSimoleSimoleSimoleSimoleSimoleSimoleBiblingSimoleSimoleSimoleSimoleSimoleSimoleBiblingSimoleSimoleSimoleSimoleSimoleSimoleBiblingSimoleSimoleSimoleSimoleSimoleSimoleBiblingSimoleSimoleSimoleSimoleSimoleSimoleBiblingSimoleSimoleSimoleSimoleSimoleSimoleBiblingSimoleSimoleSimoleSimoleSimoleSimoleBiblingSimoleSimoleSimoleSimoleSimoleSimoleBiblingSimoleSimoleSimoleSimoleSimoleSimoleBiblingSimoleSimoleSimoleSimoleSimoleSimoleBiblingSimoleSimoleSimoleSimoleSimoleSimoleBiblingSimoleSimoleSimoleSimoleSimoleSimoleBiblingSimoleSimoleSimoleSimoleSimoleSimoleBiblingSimoleSimoleSimoleSimoleSimoleSimol					DETERMINATION OF MOISTURE CONTENT
Method of Preparation : BS 1377-PART 1:1980-7.3 Preparation of samples for classification tests	Borehole/ Trial Pit	Depth (m)	Sample	Content	Description
	BH04 BH06	3.00 1.20	U7 B7	8.5 15 27 16 27	Brown silghtly gravelly CLAY Brown silghtly gravelly CLAY Brown silghtly sandy slightly gravelly CLAY Brown silghtly sandy slightly gravelly SAND
Remarks :					

Site Client

Client : Welsh Assembly Government

Job Number 40274C

Page 3 / 29

DETERMINATION OF MOISTURE CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY AND LIQUIDITY INDEX

Berther Berther Berther Partial of the sector s	Porobala (Dorth		Natural	Natural	Sample 425µm	Passing Sieve	Liquid	Plastic	Plasticitv	. بنالدانين		
BH02 5.00 D17 Natural 8.5 80 9.4 24 14 10 -0.46 CL Brown sandy gravelly CLAY BH03 3.00 U7 Natural 15 92 15 24 14 10 0.10 CL Brown sandy gravelly CLAY BH04 3.00 B7 Natural 27 72 36 24 15 9 2.33 CL Brown slightly gravelly CLAY BH06 1.20 D4 Natural 16 98 16 24 14 10 0.20 CL Brown slightly sandy slightly gravelly CLAY	Borehole/ Trial Pit	(m)	Sample	/ Sieved	Content %		Moisture Content %	Limit %	Limit %	Index %	Index	Class	Description / Remarks
BH04 3.00 B7 Natural 27 72 36 24 15 9 2.33 CL Brown silty clayey SAND BH06 1.20 D4 Natural 16 98 16 24 14 10 0.20 CL Brown silty clayey SAND	3H02	5.00	D17	Natural	8.5			24	14	10	-0.46	CL	Brown sandy gravelly CLAY
3H06 1.20 D4 Natural 16 98 16 24 14 10 0.20 CL Brown slightly sandy slightly gravelly C	3H03	3.00	U7	Natural	15	92	15	24	14	10	0.10	CL	Brown slightly gravelly CLAY
	3H04	3.00	B7	Natural	27	72	36	24	15	9	2.33	CL	Brown silty clayey SAND
2.00 U5 Natural 27 94 29 NP Image: Constraint of the second se	3H06	1.20	D4	Natural	16	98	16	24	14	10	0.20	CL	Brown slightly sandy slightly gravelly CLAY
	BH07	2.00		Natural	27	94	29		NP				Brown slightly sandy slightly gravelly SAND
Method of Preparation : BS 1377:PART 1:1990:7.4 Preparation of samples for classification tests BS 1377:PART 2:1990:4.2 & 5.2 Sample preparations	Method	of Prepara	tion:B	S 1377:P/	ART 1:199	0:7.4 Prepa	ration of sa	mples for c	lassification	tests BS 1	377:PART	2:1990:4	.2 & 5.2 Sample preparations

Site

Laboratory Test Report - 40274C/1

Job Number 40274C

Page

Client : Welsh Assembly Government

: Warren Hall Site - Broughton

orehole / Frial Pit	Depth (m)	Sample	Pipette/ Hydrometer	Description																	
BH02	2.00	B9	N/A	Brown	Brown sandy GRAVEL																
																				Sieve / Particle Size	% Passin
100															TII				\square	200 mm	100
o 📕						+++				+++				4	+++			++	\square	150 mm	100
													/							125 mm	100
0												7	*							90 mm	100
'o 🕂				$\frac{1}{1}$		+++	$\left \left \right \right $		++	$\left \right \right $		\nearrow	$\left \right $	++	+++		+	++	$\left \right $	75 mm	100
											ľ									63 mm	100
0																				50 mm	100
0						+++			$\not\vdash$	+++					+++			++	$\left \right $	37.5 mm	95
																				28 mm	88
0																				20 mm	79
0						+++	\mathbb{H}	·		+++					+++			++	\square	14 mm	72
20																				10 mm	66
.0																				6.3 mm	60
0						41												++	\square	5 mm	58
, Ш_				×	**					Ш					Ш				Ш	3.35 mm	51
,	0.002	0.006	0.02 0.	06	0.2	0.6	i	2		6		2	20	6	50	2	200	6	00	2 mm	41
CLA	Fine	Mediu	m Coarse	Fine	Med	ium	Coarse	ə Fi	ne	N	1ediu	um	Coa	arse			в воц			1.18 mm	32
	SIL	Т		SANE)				GRAV	ΈĹ						DDLE	вос		к э	600 µm	19
																				425 µm	14
																				300 µm	8
																7				212 µm	5
Grading				g Analysis					Particle Proportions										150 µm	3	
																-				63 µm	2
	D85			25.0 mm					bles	+ Bo	buld	lers	_	0%		_					
		De			6.3 mm				ivel				_	59%		-					
		D1	10		337.0 µ	m		Sai					_	39%		-					
								Silt	/Clay				_	2%		-					
		Ur	niformity Coef	ficient	18.7																
ethod of F	Preparatio	n: BS 1377	7:PART 1:1990	:7.3 Initia	al preparat	tion 7.	4.5 Pa	rticle si	ze tes	sts											
reparation	Details	: Sample	washed with w	ashing c	lispersant	, Oven	Dried	at 105 ·	110%	С											

Laboratory Test Report - 40274C/1

Job Number 40274C

Client

Site

Client	: Welsh A	Assembly Go	overnment													Page	5 / 29		
			DETERI	MINATION	OF PA	RTICL	.E S	IZE D	DISTR	IBU	TION								
Borehole / Trial Pit	Description																		
BH03	2.00	B5	Pipette Browr	a sandy CLAY															
															P	ieve / article Size	% Passing		
100				**		* *	\mathbf{X}									0 mm 0 mm	100		
90																5 mm	100		
80		+++++++								$\left \right $			++	++		mm	100		
70			,	⊁			+++					+	++		75	mm	100		
															63	mm	100		
60															50	mm	100		
50													++			.5 mm	100		
40			/													mm	100		
																mm	100		
30																mm	100		
20			/													mm	100 100		
																3 mm	95		
10	*															35 mm	95		
о Ш	0.002	0.006	0.02 0.06	0.2 0.6	 `	2	6		20	60		200	6			nm	94		
																18 mm	94		
CLA	Y Fine SIL	Mediur T	m Coarse Fine		Coarse	Fine GRA		ledium	Coars	se	COBBLE	s воі	ULDE	RS	60	0 µm	93		
	51	-1	JAN	0		GRA	VLL								42	5 µm	92		
															30	0 µm	89		
				Г						_				21	2 µm	82			
	Grading Analysis							Particle Proportions											
															63	μm	52		
D85				200.0 µm	Ļ	Cobbles	oulders		0%					20	μm	18			
		D6	0	100.0 µm	ļ	Gravel			6%						6		12		
		D1	0	3.0 µm	ļ	Sand				3%					2 μ	um	9		
					ļ	Silt				2%									
		Un	iformity Coefficient	29.8		Clay			9%	%									
			2:PART 1:1990:7.3 Initi																
Preparation	Details		washed with washing																
Method of 1	Fest	: BS 1377	2:PART 2:1990:9 Deter	mination of parti	cle size d	istribution													
_ .																			
Remarks		:																	

: Welsh Assembly Government

Laboratory Test Report - 40274C/1

Job Number 40274C

Page

Client

Site

				D	ETER		N OF P	ARTIC	CLES	SIZE	DIST	RIB	UTIC	ON					
Borehole / Trial Pit	Depth (m)	Samp	ole	Pipette/ Hydromete	r	Description													
BH04	2.00	B5	5	N/A	Brown	Brown SAND													
					1													Sieve / Particle Size	% Passin
100																	\square	200 mm	100
90								+	* **	**								150 mm	100
							×											125 mm	100
80																	\square	90 mm	100
70		+++++						_								+++		75 mm	100
																		63 mm	100
60						*												50 mm	100
50								_			_					+++		37.5 mm	100
																		28 mm	100
40																		20 mm	95
30						\star		_								+++		14 mm	93
																		10 mm	93
20																		6.3 mm	92
10								_			_					+++	-	5 mm	92
																		3.35 mm	91
0 Ш	0.002	0.006		0.02 (0.06	0.2	0.6	2	6		20		60	20	0	60)	2 mm	90
	Fine	Me	dium	Coarse	Fine	Medium	Coarse	Fine	e I	Medium		barse					_	1.18 mm	90
CLA	IY SII			I	SAN		1	-	RAVEL				COB	BLES	BOU	LDER	S	600 µm	86
																		425 µm	78
																		300 µm	57
		Г					1											212 µm	40
				Gradii	ng Analys	sis			Parti	cle Pro	portio	ns						150 µm	30
		Ļ			-		-											63 µm	16
		Ļ	D85	i		600.0 µm	-	Cobb	oles + B	Boulder	s	0%							<u> </u>
		Ļ	D60)		300.0 µm	-	Grav	el			10%							
		Ļ	D10)		-	-	Sand	I			74%							
		Ļ					-	Silt/C	Clay			16%							
			Uni	formity Coe	fficient	-													
													_						
Method of I	Preparatio	n : BS 1	377:	PART 1:199	0:7.3 Initia	al preparation	7.4.5 Part	icle size	e tests										
Preparation	Details	: Sam	iple v	vashed with	washing o	dispersant, Ov	en Dried a	t 105 - 1	10℃										
Method of 1						mination of pa													

Laboratory Test Report - 40274C/1

Job Number 40274C

Page

Client : Welsh Assembly Government

: Warren Hall Site - Broughton

orehole / Frial Pit	Depth (m)	Sample	Pipette/ Hydrometer									Des	script	ion							
BH04	3.00	B7	Pipette	Brown	silty clayey	SANI	D														
		I	-	1																Sieve / Particle Size	% Passin
100						•*	×	-*	***											200 mm 150 mm	100
0					*															125 mm	100
io 🕂				++++-		++			+	+++		_		+				+	+	90 mm	100
o 📗					¥ ∐															75 mm	100
					Λ															63 mm	100
io 🚻					*							+								50 mm	100
o																				37.5 mm	100
				/																28 mm	100
o _																				20 mm	100
o 🚻				┼┼┟╢─				_				_								14 mm	100
																				10 mm	100
0																				6.3 mm	100
0										+++					+++					5 mm	100
, Ш	x	-++++++																		3.35 mm	99
	0.002	0.006	0.02 0	.06	0.2	0.6		2		6		20		60)	2	00	6	00	2 mm	98
CLA	Fine	Medi	um Coarse	Fine	Mediu	m (Coarse	e Fir	е	M	edium		Coars	e	COF		BOU		RS	1.18 mm	97
	SIL	.т		SAN	D			G	RAVE	L										600 μm	96 94
																				425 μm 300 μm	
																				212 μm	86 72
																				150 μm	57
			Gradin	g Analys	sis				Pa	rticl	e Pro	porti	ons							63 μm	16
			85		300.0 µm	-		Cob	bles +	- Bo	ulder	•	0%)						20 μm	5
			60		200.0 µm	_		Grav		. 00	uluel	5	2%							 6 μm	3
		-	10		34.0 µm	-		San					829							2 μm	1
								Silt	-				149								
		U	niformity Coe	ficient	4.8			Clay	,				1%	5							
ethod of	Prenaratio	n • RS 127	7:PART 1:1990).7.3 Initi-	al preparatio	n 7/	15 Po	ticle siz	a taete											I	1
51100 01	Details		e washed with r																		

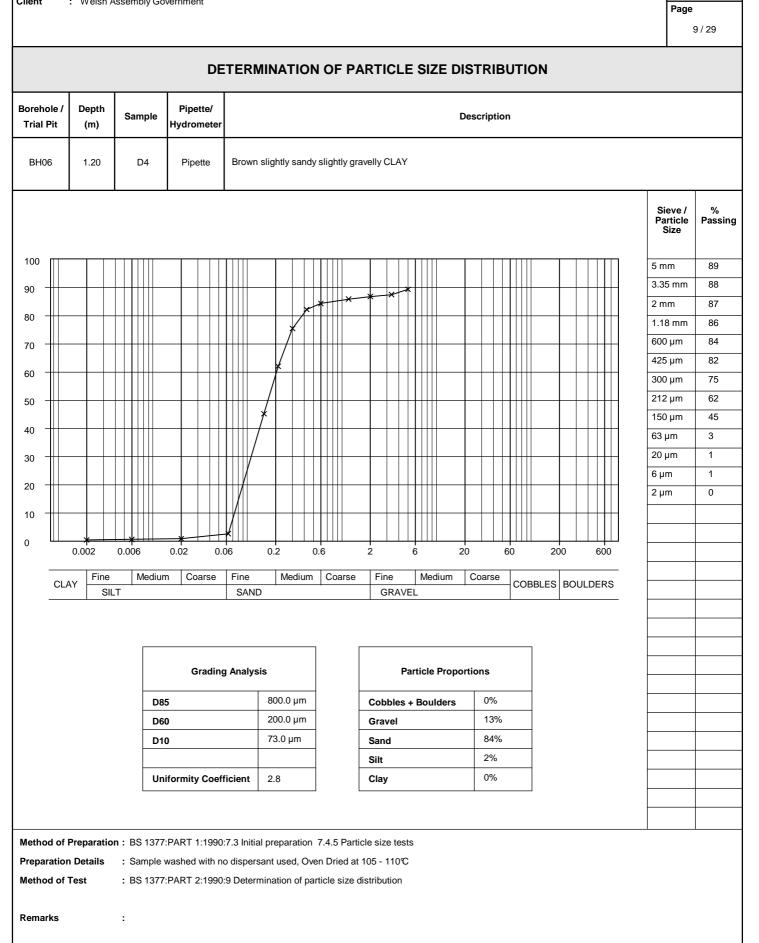
Laboratory Test Report - 40274C/1

Job Number 40274C

Page

Client : Welsh Assembly Government

: Warren Hall Site - Broughton


	(m)	Sample	Нус	Pipette/ dromete	ər													D	Desci	riptio	on								
BH06	0.20	B2	F	Pipette	В	rown s	sandy	y CL/	AY																				
																												Sieve / Particle Size	% Passin
00										*	H	×	*	- ×	*	×	*	*	X							Π		200 mm	100
o 📗		+++++						\downarrow	\uparrow				_	_												\parallel	_	150 mm	100
																												125 mm	100
0							1							1											\square			90 mm	100
o 💾		+++++++	-+	++			4		+	\parallel	\parallel		+	+			\parallel			+		$\parallel \mid$		\vdash	+	\parallel	-	75 mm	100
						/	Ì																					63 mm	100
0						X				Π	Π															T		50 mm	100
o 🚻					H	<u> </u>	_			+			_	+							$\left \right $				+		-	37.5 mm	100
																												28 mm	100
0			\nearrow	\square																								20 mm	100
o 🕂					+++		_		++	╢			_	+							$\left \right $				++	+	-	14 mm	99
																												10 mm	99
0	\mathbf{x}																											6.3 mm	99
o 🕂		++++++			+++		_		+	++				+							+++				++	+	-	5 mm	98
																												3.35 mm	98
	0.002	0.006	0.02	2 (0.06		0.2		0	.6			2			5		2	20		60		20)0	6	00	_	2 mm	97
	Fine	Medi	um	Coarse	F	ine		Medi	um	С	ີເດລ	irse	F	ine		Me	ediur	n	Co	arse							_	1.18 mm	96
CLA	Y SII					SAND							_		٩VE						-C	OBB	LES	BOU	LDE	RS		600 µm	96
																											_	425 µm	94
																												300 µm	89
												ſ																212 µm	79
				Gradiı	na Ai	nalvsis	5								Pa	ticl	e Pro	ono	rtion	IS								150 µm	68
						,												-										63 µm	47
		C	985				300	.0 µr	n				Co	bble	es +	Βοι	ulde	rs		0%								20 µm	39
		C	060				100	.0 µr	n				Gr	avel						3%								6 µm	28
		C	010				-						Sa	nd						50%	>							2 µm	16
													Sil	t						30%	>								
		L	Iniforn	nity Coe	effici	ent	-						Cla	ay						16%	, D								
												L																	
ethod of I	Preparatio	n : BS 13	77:PAR	₹T 1:199	90:7.3	Initial	prep	arati	ion	7.4	.5	Parti	cle s	ize t	ests														
	Details	: Sampl																											

: Warren Hall Site - Broughton

Client : Welsh Assembly Government

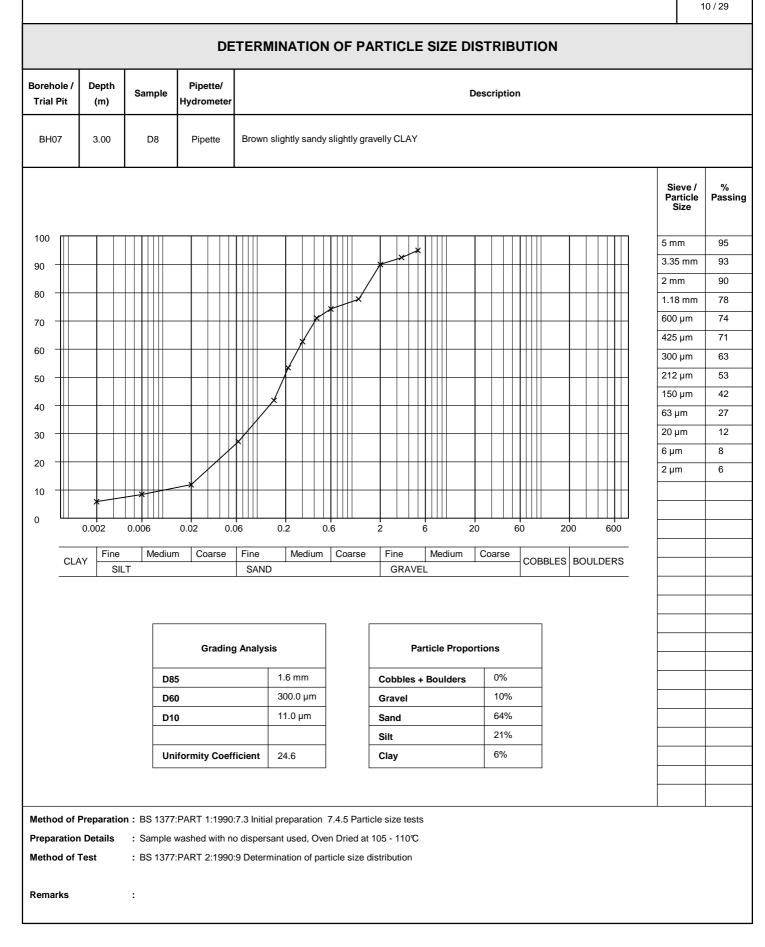
ASSOCIATES

Laboratory Test Report - 40274C/1

Job Number 40274C

: Warren Hall Site - Broughton

ASSOCIATES


Client : Welsh Assembly Government

Laboratory	Tost	Report	- 40274	C/1
Laboratory	1621	report	- 402/4	G / I

Job Number

40274C

Page

: Warren Hall Site - Broughton

: Welsh Assembly Government

Site

Client

Laboratory Test Report - 40274C/1

40274C

Page

11 / 29

DETERMINATION OF THE pH VALUE AND THE SULPHATE CONTENT OF SOIL AND GROUNDWATER

N V					ation of Solubl	e Sulphate	Percentage		
BH02 0.20 0.2 -0.1 51 6.1 Brown sightly sandy sightly gravelly CLAY BH03 1.0 0.4 0.04 0.2 120 BH05 1.00 0.4 0.04 92 120 BH06 1.00 0.4 0.4 98 7.2 Brown sightly sandy sightly gravelly CLAY BH07 1.00 0.4 0.4 0.4 98 7.2 Brown sightly sandy sightly gravelly CLAY BH07 1.20 D4 0.4 0.4 98 7.2 Brown sightly sandy sightly gravelly CLAY BH07 1.20 D4 0.4 0.4 1.5 1.6 1.6 BH07 1.20 D4 0.4 0.4 1.5 1.5 1.5 BH07 1.20 D4 0.4 0.4 1.5 1.5 1.5 BH07 1.20 D4 0.4 0.4 1.5 1.5 1.5 BH07 1.20 D4 0.4 1.5 1.5 1.5 1.5 BH08 D4 D4 D4 D4	Borehole/ Trial Pit	Depth (m)	Sample	Total S04	oil S04 in 2:1 water:soil g /l	Groundwater g /I	of sample passing 2mm Sieve %	рН	Description / Remarks
BH04 2.70 W9 0 0.04 0.0 8.20 BH05 1.20 D4 0.0 0.4 0.6 7.20 Brown slightly sandy slightly grawelly CLAY BH07 1.20 D4 0.4 0.6 7.0 Brown slightly sandy slightly grawelly CLAY BH07 1.20 D4 0.4 0.6 7.0 Brown slightly sandy slightly grawelly CLAY BH07 1.20 D4 0.4 0.4 0.6 7.0 Brown slightly sandy slightly grawelly CLAY BH07 1.20 D4 0.4 0.4 0.6 7.0 Brown slightly sandy slightly grawelly CLAY BH07 1.20 D4 0.4 D4 D4 D4 D4 D4 BH07 1.20 D4 D	BH02	0.20	D2				51	6.1	Brown slightly sandy slightly gravelly CLAY
BH06 1.30 0.3 0.1 98 7.2 Brown grawelty SAND BH06 2.0 0.5 0.1 46 7.1 Brown slightly sandy slightly grawelty CLAY BH07 1.20 0.4 0.4 46 7.1 Brown slightly sandy slightly grawelty CLAY BH07 1.20 0.4 0.4 0.4 65 7.0 Brown slightly grawelty CLAY BH07 1.20 0.4 0.4 0.4 65 7.0 Brown slightly grawelty CLAY BH07 1.20 0.4 0.4 0.4 1.4 1.4 1.4 BH07 1.20 0.4 0.4 0.4 1.4 1.4 1.4 1.4 BH07 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 BH07 1.4 <	BH03	1.70	D4		0.1		50	7.2	Brown sandy CLAY
BH00 1.20 D4 0.4 96 7.2 Brown slightly sandy slightly gravelly CLAY BH07 1.20 D4 0.4 66 7.0 Brown slightly sandy slightly gravelly CLAY BH07 1.20 D4 0.4 66 7.0 Brown slightly sandy slightly gravelly CLAY BH07 1.20 D4 0.4 0.4 66 7.0 Brown slightly sandy slightly gravelly CLAY BH07 1.20 D4 0.4 0.4 0.4 66 7.0 Brown slightly sandy slightly gravelly CLAY BH07 1.20 D4 0.4 D4 D4<	BH04	2.70	W9			0.04		8.2	
BH08 2.20 D5 0.1 46 7.1 Brown slightly sandy slightly gravelly CLAY BH07 1.20 D4 0.4 66 7.0 Brown slightly sandy slightly gravelly CLAY BH07 1.20 D4 0.4 96 7.0 Brown slightly sandy slightly gravelly CLAY BH07 1.20 D4 0.4 96 7.0 Brown slightly sandy slightly gravelly CLAY	BH05	1.30	D3		0.1		98	7.2	Brown gravelly SAND
BH07 1.20 D4 0.4 66 7.0 Brown slightly sandy slightly gravelity CLAY Image: Horizer of the state	BH06	1.20	D4		0.4		96	7.2	Brown slightly sandy slightly gravelly CLAY
Method of Preparation : BS 1377:PART 1:1900.7.5 Preparation of soil for chemical tests: BS 1377:PART 3:1990.5.2, 6.3, 5.4 & 9.4	BH06	2.20	D5		0.1		46	7.1	Brown slightly sandy slightly gravelly CLAY
	BH07	1.20	D4		0.4		66	7.0	Brown slightly sandy slightly gravelly CLAY
Method of Test : BS 1377: PART 3: 1990:5 Determination of the sulphate content of soil and ground water BS 1377: PART 3: 1990:9 Determination of the pH value									

Job Number

Laboratory Test Report - 40274C/1

Job Number 40274C

Page

Client

Site

: Warren Hall Site - Broughton

			DE	TERMI	NAT	ION	OF (JALI	FOR	NIA	BEA	RIN	RÆ	0110	(CB	R)				
Borehole / Trial Pit	Depth (m)	Sample	% Passing 20 mm Sieve									Des	scripti	on						
BH03	0.30	B2	100 %	Brown s	andy Cl	LAY														
				1																
Moisture Co	ontent %																			
Bulk Densit		2.	15	1.20			1		1	<u> </u>					<u> </u>					
Dry Density	-		15																	
Soaked Tes	t	N	lo	1.08																
Test on		Пто	OP	0.96																
Moisture Co	ontent %		4	0.04																
Surcharge v			40	0.84																
Penetration	mm	2.5	5.0	2 0.72																
Force kN		0.22	0.44	nger (_ [
Corrected C	BR %	1.7	2.2	C.72 (N) (KN) Decompletion (C.72 (C.72) (C.7												 _			$\overline{\left(\begin{array}{c} 0 \end{array}\right)}$,
				0 0.48													<u>+ 0 (</u>			
Test on		О ВОТ	ТОМ													þŰ				
Moisture Co			3	0.36										$\overline{+}$	Ť					
Surcharge v			40	0.24							, 0 ^t	Ĵ,	Ĭ							
Penetration	mm	2.5	5.0					2 A I	₽¤'	۳ ۳										
Force kN	DD 0/	0.22	0.38	0.12		, A (
Corrected C	ык %	1.7	1.9	0.00	8	3														
		ТОР	воттом	0.	00 0.8	50 1.	00 1	50 2	00 2	50 3	00 3.	50 4.	00 4	.50 5. ger (m.	.00 5.	.50 6.	00 6.	50 7.	00 7.5	50 8.00
Test on				I						г			Pini	997 (III	,					
Test on Reported C	BR %	2.2	1.9																	

Laboratory Test Report - 40274C/1

Job Number 40274C

Client : Welsh Assembly Government

: Warren Hall Site - Broughton

IG RATIO (CBR)	DET			
escription	DET			
	% ssing mm ieve	Sample	Depth (m)	Borehole / Trial Pit
	0 %	В3	1.20	BH04
			ontent %	Moisture Co
		2.1	y Mg/m³	Bulk Densit
		1.9	∕ Mg/m³	Dry Density
		No	it	Soaked Tes
		🗆 то		Test on
		13	ontent %	Moisture Co
		4.4	weight kg	Surcharge v
	5.0	2.5	mm	Penetration
	.46	0.22		Force kN
	2.3	1.7	CBR %	Corrected C
		I		
	1	O BOTT		Test on
		13	ontent %	Moisture Co
Φ		4.4	weight kg	Surcharge v
	5.0	2.5	mm	Penetration
	.39	0.23		Force kN
	2.0	1.7	CBR %	Corrected C
4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 of plunger (mm)	ттом	TOP I		Test on
	2.0	2.3	BR %	Reported C
		2.2	%	Mean CBR %
4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 of plunger (mm)	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	2.3	% Preparation	Reported Cl

Laboratory Test Report - 40274C/1

Job Number 40274C

Page

Client : Welsh Assembly Government

: Warren Hall Site - Broughton

																				14
			DE	TERM	INAT	ION	OF (CALI	FOR	NIA	BEA	RING	G RA	τιο	(CB	R)				
Borehole / Trial Pit	Depth (m)	Sample	% Passing 20 mm Sieve									Des	scriptio	on						
BH05	0.50	B2	100 %	Brown (ravelly	SAND														
		1	1																	
		Γ		1																
Moisture Co																				
Bulk Densit			15	1.20																
Dry Density			15																	
Soaked Tes	t	N	lo	1.08																
Test on		🗆 то	ЭР	0.96																
Moisture Co	ontent %	_	3	0.04																
Surcharge v			40	0.84						1										
Penetration		2.5	5.0	z ^{0.72}																
Force kN		0.24	0.45	ıger (ŀ														 		
Corrected C	BR %	1.8	2.2	C 0.72 C 0.00 C 0.00 C 0.00 C 0.00 C 0.00 C 0.00 C 0.72 C 0.7												<u> </u>				,
				0 pec.48													<u> </u>			
Test on		О ВОТ	ТОМ	2											$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$	5 °	Ī			
Moisture Co	ontent %	1	3	0.36										<u>+ 0 (</u>	₽					
Surcharge v	weight kg	4.	40								<u></u> ₩98									
Penetration	mm	2.5	5.0	0.24					50											
Force kN		0.23	0.39	0.12				۲¤'	[
Corrected C	BR %	1.7	2.0		6	βŌ														
				0.00 0														.50 7.	00 7.5	50 8.00
Test on		TOP	воттом		5.							tion of				5	5			
		2.2	2.0																	
Reported C	DR /0																			

Laboratory Test Report - 40274C/1

Job Number 40274C

Page

Client : Welsh Assembly Government

: Warren Hall Site - Broughton

CONTENT DENSITY AND LINDRAINED SHEAR STRENGTH

ehole / ial Pit	Depth (m)	Sample					De	escri	iption
3H03	3.00	U7	Brown slightly gravel	ly CLAY					
							22 2 2	90 - 61 - 32 -	
ue		Length	of Sample (mm)		450	\neg	n 2 n	03 -	
Initial Specimen		Depth f	rom top of sample (m	m)	50			74 -	
al Sp		Conditi	on of Sample:	Indisturb	ed		5 ¹	45 -	
Init		Orienta	tion:	Vertical	í			16 -	
Test Ty	pe	•	S	ingle Sta	ige		פֿ 8 ב	7 -	
Length	of Specim	en (mm)		209.1] ;	5	8 -	
Diamet	er of Speci	men (mm)		101.5					
Moistu	re Content	(%)		15				9 -	
Bulk De	ensity (Mg/	′m³)		2.34			0	(0 5 10 15 20 25
Dry Dei	nsity (Mg/n	n³)		2.04					Strain %
Membra	ane Thickn	ess (mm)		0.3					
Membra	ane Type			Latex					
Rate of	Strain (%/	min)		1.91					
Me	asured Ce	II Pressure ((kPa)	60					
<u>ي</u> ¥ Str	ain at Failı	ıre (%)		17.2					
Test Results 0 M	mbrane Co	orrection (kl	Pa)	1.0					
o 1 Iest	rrected De	viator Stres	s (kPa)	284					
Sh	ear Stress	(kPa)		142					
Мо	de of Failu	ire (B/P/C)		Plastic					

Laboratory Test Report - 40274C/1

Job Number

Client : Welsh Assembly Government

: Warren Hall Site - Broughton

40274C

Page 16 / 29

DETERMINATION OF MOISTURE CONTENT, DENSITY AND UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE (DEFINITIVE METHOD)

rehole / rial Pit	Depth (m)	Sample					Description
BH07	2.00	U5	Brown slight	tly sandy slightly g	ravelly SAND		
Initial Specimen		Depth fr	of Sample (m rom top of sa on of Sample	mple (mm) :: Undisturbe		Max Deviator Stress (kPa)	522 - 464 - 406 - 348 - 290 -
Test Ty		Orientat		Vertical Single Sta		evi	232 -
	of Specim	en (mm)		209.6			174 -
	er of Speci			101.1		Ma	116 -
	re Content			17			58 -
	ensity (Mg/			2.27			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Dry Dei	nsity (Mg/m	1 ³)		1.93			Strain %
Membra	ane Thickn	ess (mm)		0.36			
Membra	ane Type			Latex			
Rate of	Strain (%/	nin)		1.91			
Me	asured Cel	l Pressure ((kPa)	40			
<u></u> Str	ain at Failu	re (%)		14.3			
Test Results 0 M	mbrane Co	rrection (kl	Pa)	1.1			
o O	rrected Dev	iator Stres	s (kPa)	573			
Sh	ear Stress	(kPa)		287			
Mo	de of Failu	re (B/P/C)		Plastic			

Method of Test

Remarks

: BS 1377:PT2:1990:3.2 Determination of moisture content, BS 1377:PT2:1990:7.2 Determination of density by linear measurement and BS1377:PT7:1990:8.4 Determination of undrained shear strength in triaxial compression without measurement of pore pressure (definitive method).

method) : Membrane Type: Latex

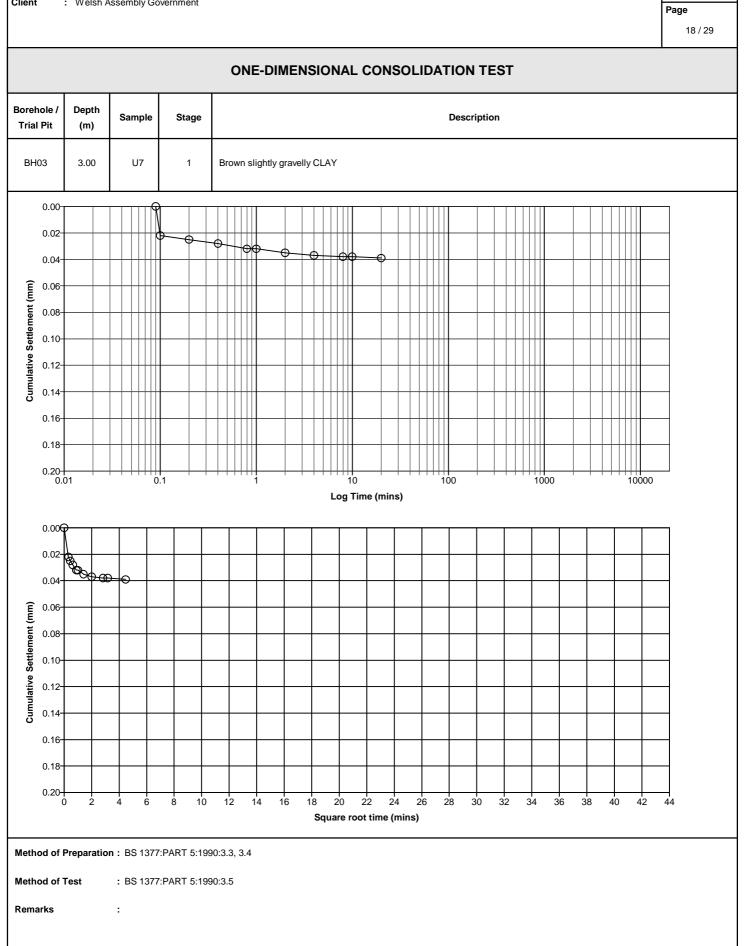
: Warren Hall Site - Broughton

Client : Welsh Assembly Government

Laboratory Test Report - 4027	'4C/1
	Job Number
	40274C

I

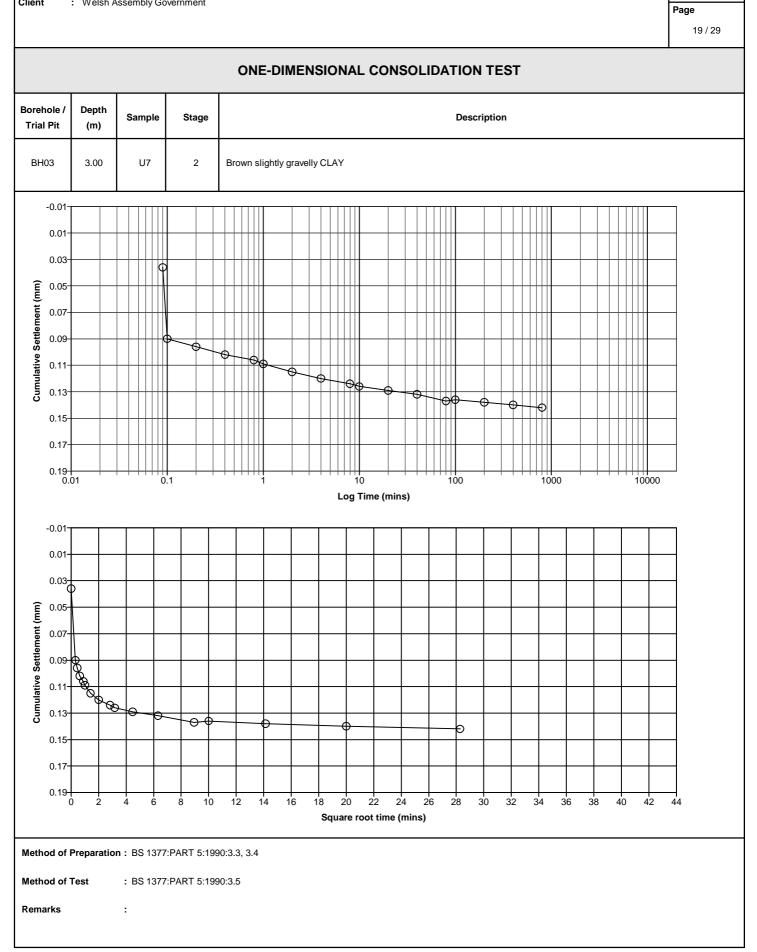
Page


L

														17 / 2
				ONI	E-DIN	IENSIC	NAL CO	NSOL	IDATION	TEST				
Borehole / Trial Pit	Depth (m)	Sampl	le						Description					
BH03	3.00	U7	Brown	slightly gravell	y CLAY	,								
e		Leng	th of Samp	le (mm)			450							
ecim		Dept	h from top	of sample (m	m)		50							
Initial Specimen		Conc	lition of Sa	mple:	U	ndisturbed								
Lniti		Orier	ntation:			Vertical								
	Diamet	ter (mm)		75.00		0.42			R					
	article Der		/m³)	2.65										
	velling Pre			(Assumed)		0.41				\mathbb{N}	++	+		+
		essure (ki emp (°C)	wiii*)	19										
		auh (C)		19		0.40					$\forall +$	+		
		Γ	Inital	Final	0									
H	eight (mm))	19.00	18.72	ATIC	0.39					++	\mathbb{N}		
	t Weight (179.10	180.38	VOID RATIO				Q				\backslash	
	ure Conten		14	8.66	NOI	0.38			\rightarrow	\mathbb{H}	++	++	$\overline{}$	
	Density (Mg		2.13	2.18	-								Q	
Dry D	ensity (Mg	J/m³)	1.86	2.01		0.37					\uparrow	$\downarrow \uparrow$		
,	/oid Ratio		0.425	0.318									\sim `	
Degree	of Saturati	ion (%)	89.79	72.17		0.36							$\overline{}$	\mathbf{X}^{\dagger}
						0.35								S
						1	0		PRI	ESSURE	kN/m		00	
		Pressure kN/m²	e Mv m²/Mi	Cv N m²/yea	ır	Void Ratio			Pressure kN/m²	Mv m²/MN	C m²/y		Void Ratio	
	Ļ	30	0.07			0.419								
	F	60	0.19			0.403								
	\vdash	160 260	0.10			0.372								
	\vdash	30	0.07			0.383								
	F													
Method of Method of		30 n : BS 13	0.04	43										
Remarks		:												

: Warren Hall Site - Broughton

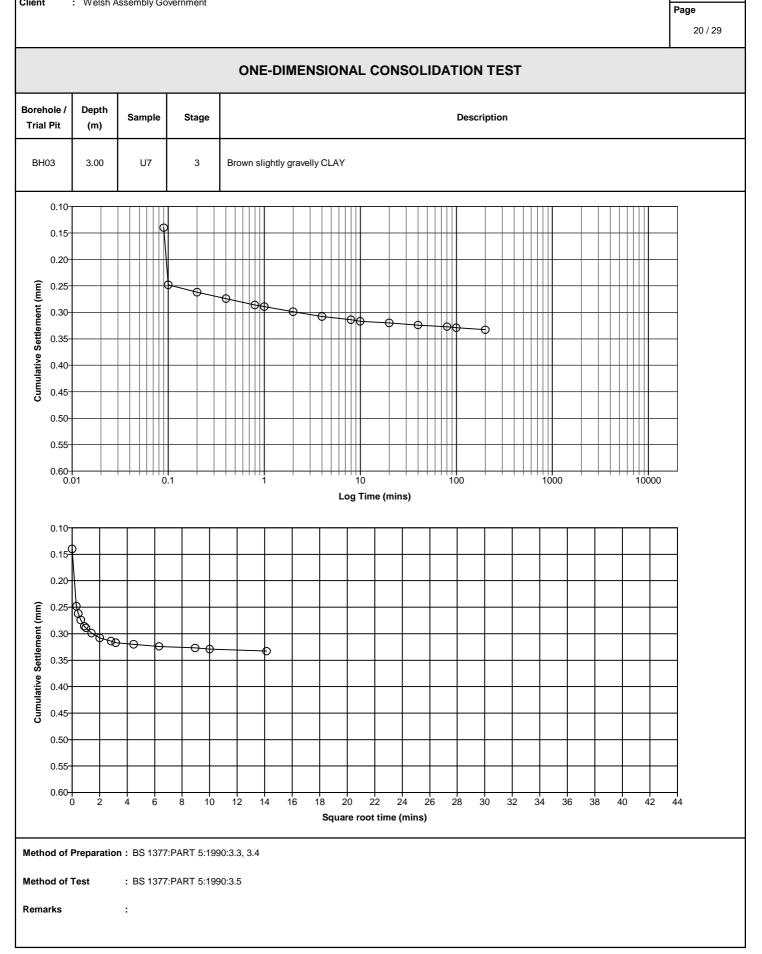
Client : Welsh Assembly Government


Laboratory Test Report - 40274C/1

Job Number

: Warren Hall Site - Broughton

Client : Welsh Assembly Government

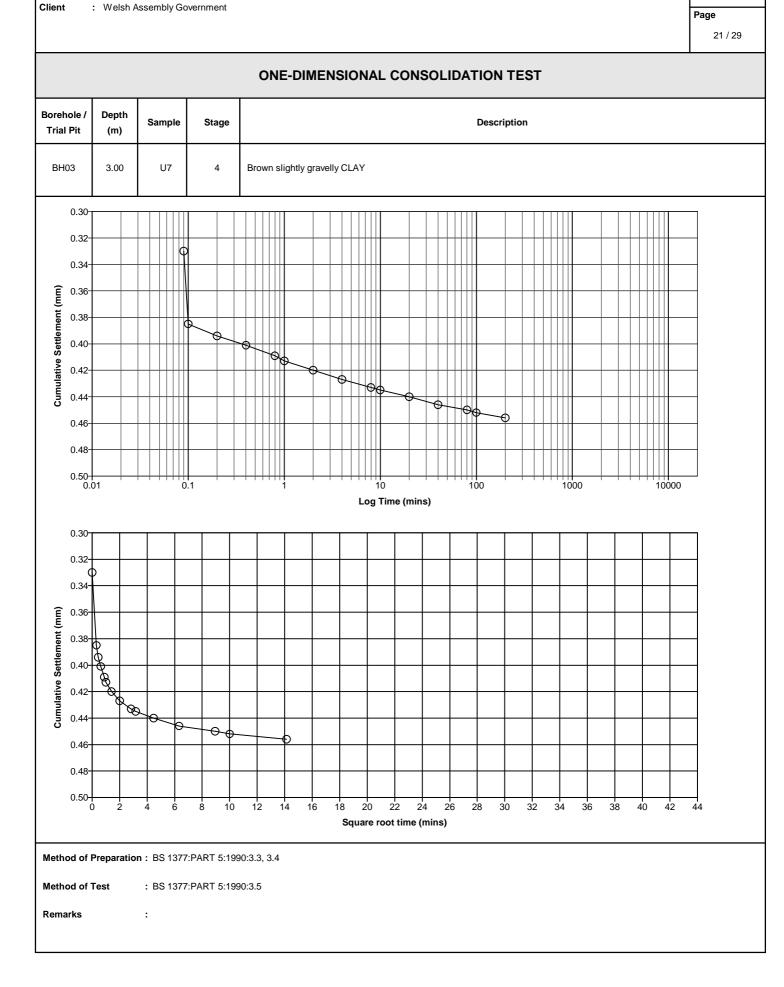

Laboratory Test Report - 40274C/1

Job Number

: Warren Hall Site - Broughton

Client : Welsh Assembly Government

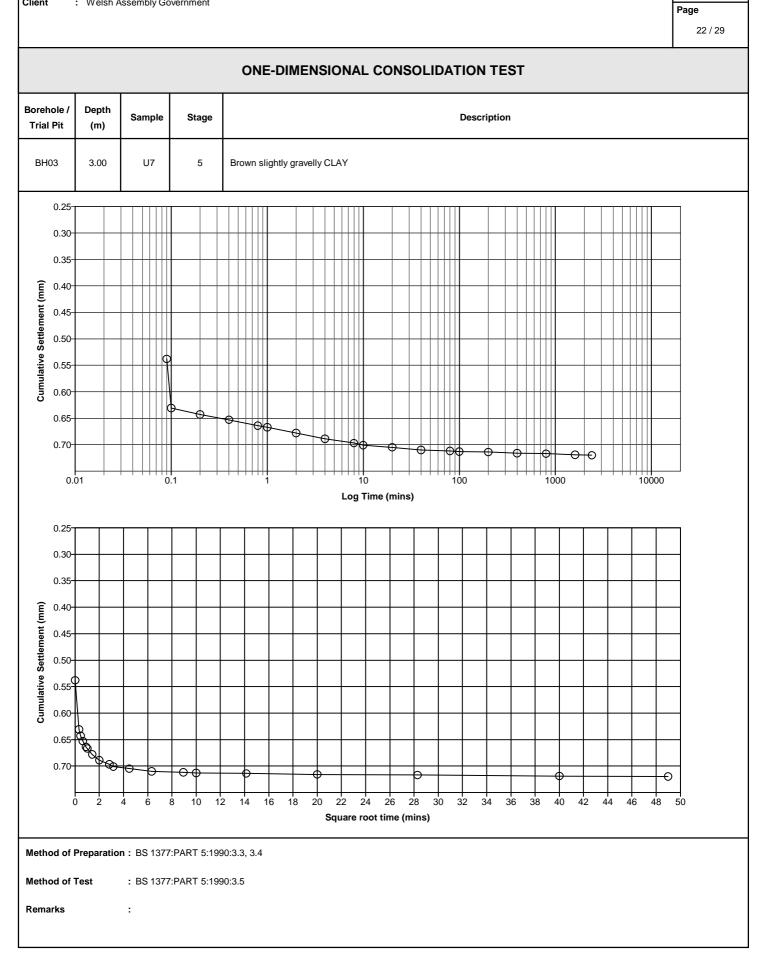
Job Number



ASSOCIATES

: Warren Hall Site - Broughton

Laboratory Test Report - 40274C/1



: Warren Hall Site - Broughton

Client : Welsh Assembly Government

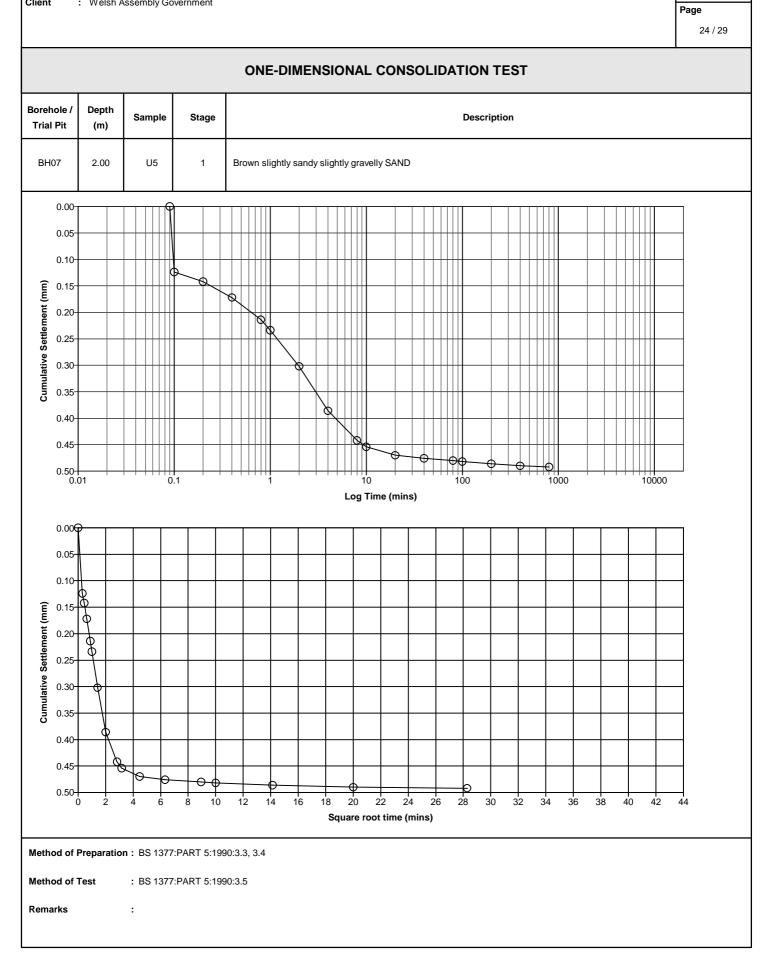
Laboratory Test Report - 40274C/1

Job Number

Laboratory Test Report - 40274C/1

Page

Client : Welsh Assembly Government

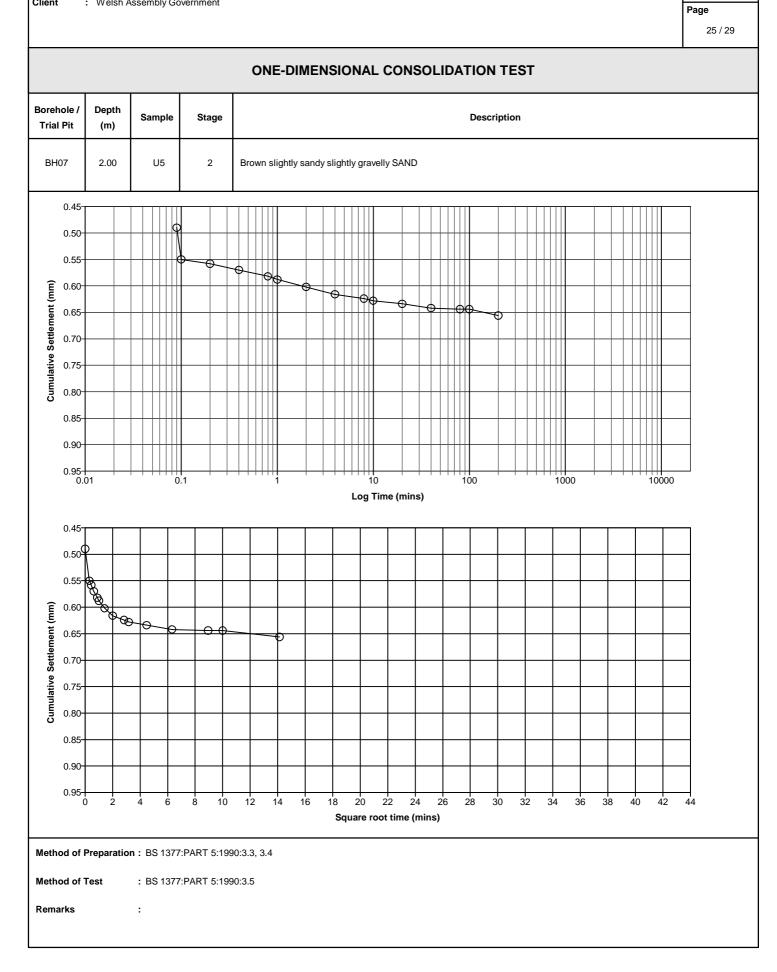

: Warren Hall Site - Broughton

																	23 / 29
				ON	E-DII	MENSIC		ISOL	IDAT	ION	TES	т				·	
rehole / ial Pit	Depth (m)	Samp	le						Descri	iption							
H07	2.00	U5	Brown	slightly sandy	slightly	gravelly SA	ND										
en		Leng	gth of Samp	le (mm)			450										
ecim		Dept	th from top	of sample (m	m)		50										
Initial Specimen		Con	dition of Sar	mple:	U	ndisturbed											
Initi		Orie	ntation:			Vertical											
						_											· · · · · · ·
	Diam	eter (mm)		75.00		0.15		R									
Р	article D	ensity (Mg	g/m³)	2.65 (Assumed)		0.15			$\overline{\ }$								
Sv	velling P	ressure (k	N/m²)							$\overline{\ }$	Q						
	Lab 1	ſemp (℃)		19		0.13					\mathbb{N}						
												\mathbb{N}					
			Inital	Final	ο	0.11						$\left \right $					
Н	eight (mr	n)	19.00	17.89	ATI												
We	t Weight	(g)	207.94	206.60	VOID RATIO	0.09		_									
Moistu	ire Conte	ent (%)	14	6.49	NOI												
Bulk D	ensity (N	/Ig/m³)	2.48	2.61		0.07		¢							à		
Dry D	ensity (N	lg/m³)	2.17	2.45		0.07					\vdash					\backslash	
v	oid Ratio	b	0.221	0.082									\rightarrow	\vdash			
Degree	of Satura	tion (%)	171.47	209.74		0.05											
																	0
						0.03 1()				-				100		+1
										PRE	SSU	RE	kN/m	2			
		Pressure kN/m²	e Mv m²/MN	Cv N m²/yea	r	Void Ratio			Press kN/i		Mı m²/M		C ⁻ m²/y		Void Ratio		
	ļ	20	1.3	24		0.156											
	ŀ	40	0.46	38		0.134										_	
	ŀ	140	0.25	89		0.073											
	ŀ	240 20	0.14	148		0.039											
	ŀ	20	0.00	112		3.070											
thod of	Prenarati		377'PART 5	:1990:3.3, 3.4	I				L]	
thod of			377:PART 5														
narks		:															

: Warren Hall Site - Broughton

Client : Welsh Assembly Government

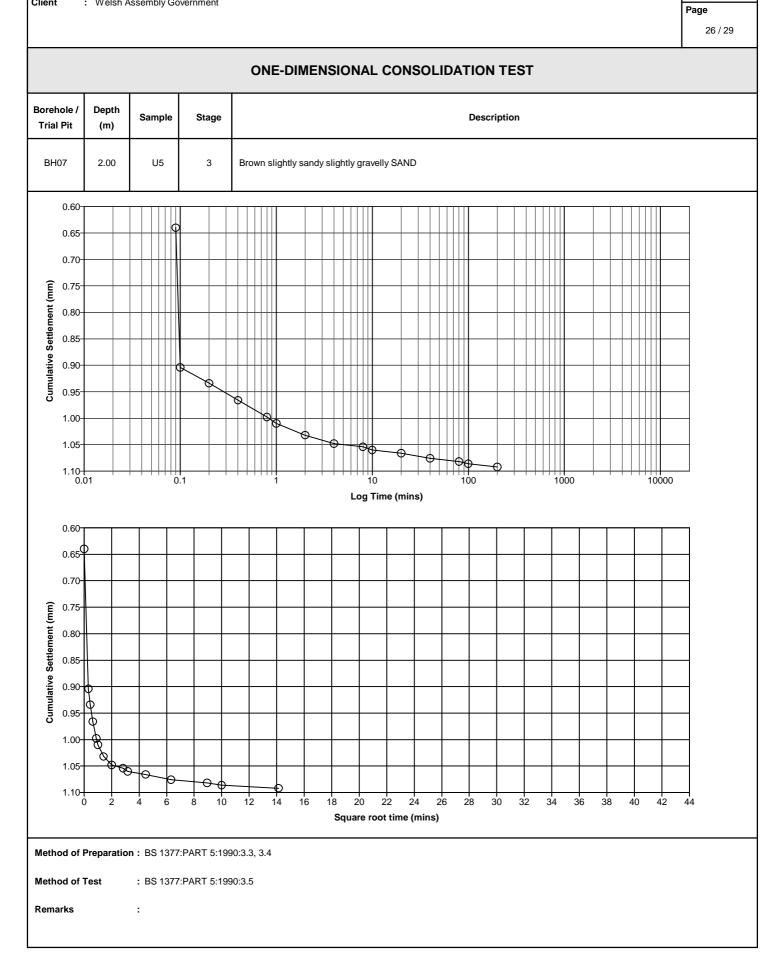
Job Number



IAN FARMER ASSOCIATES

Laboratory Test Report - 40274C/1

: Warren Hall Site - Broughton

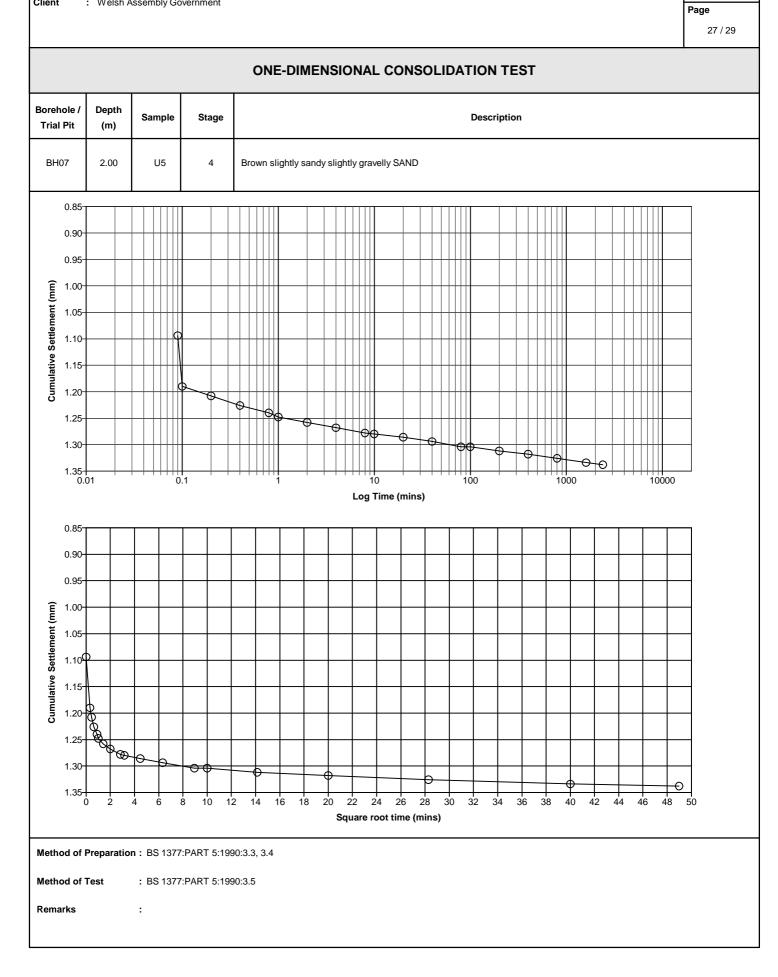


IAN FARMER ASSOCIATES

: Warren Hall Site - Broughton

Laboratory Test Report - 40274C/1

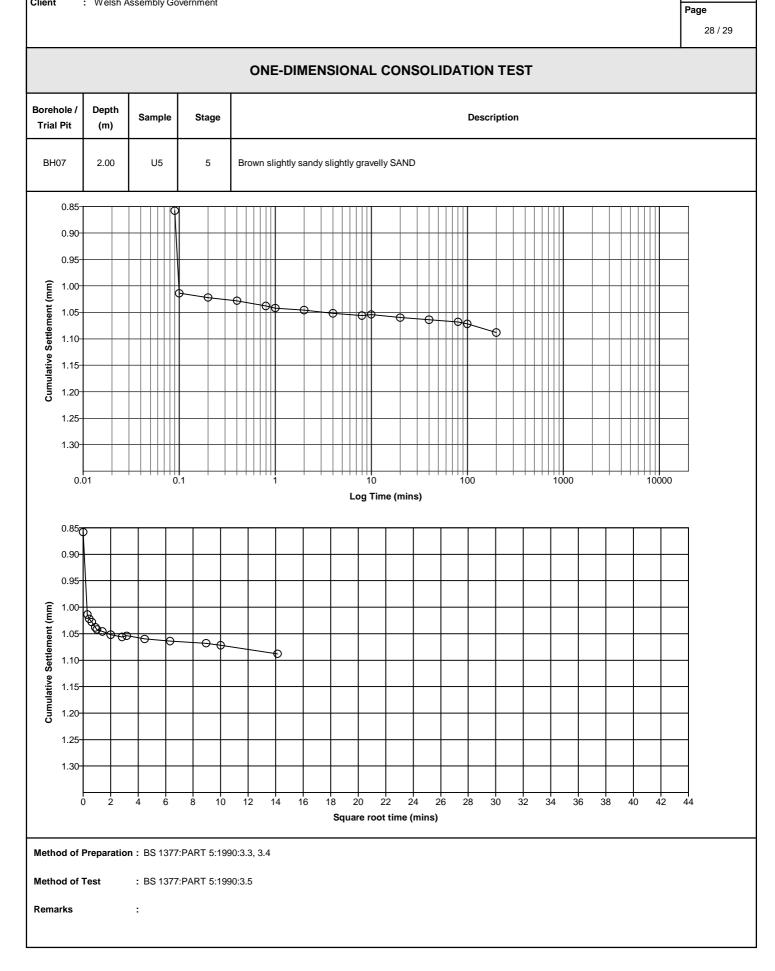
Job Number 40274C



IAN FARMER ASSOCIATES

Laboratory Test Report - 40274C/1

: Warren Hall Site - Broughton



IAN FARMER ASSOCIATES

: Warren Hall Site - Broughton

Laboratory Test Report - 40274C/1

Job Number 40274C

Test Report :

40274C/1

Site : Job Number : Originating Client : Warren Hall Site - Broughton 40274C Welsh Assembly Government

All opinions and interpretations contained within this report are outside of our Scope of Accreditation.

The following tests contained within this report are not UKAS Accredited. One - Dimensional Consolidation

Date of Issue :

20/2/08

Geotechnical & Environmental Specialists

14 Faraday Close, District 15, Pattinson North Industrial Estate, Washington, Tyne & Wear, NE38 8QJ. Tel. 0191 4166375 Fax. 0191 4191578 Email. lab@ifawashington.co.uk Internet.www.ianfarmerassociates.co.uk

Ian Farmer Associates (1998) Ltd 17 Rivington Court Warrington Cheshire WA1 4RT

F.A.O. Mr A Latimer

TEST REPORT - 40274D/1

Job Number : 40274D

Originating Client : Welsh Assembly Government

Originating Reference : 40274D

Date Sampled : Not Given

Date Scheduled : 25.01.08

Date Testing Started : 3/2/08

Date Testing Finished :

Remarks :

- First Report for above Job Number
- Samples will be disposed of 28 days after the report is issue unless otherwise agreed
- This report may contain results from tests which are not included within the scope of the UKAS accreditation. Please see final sheet for details.

19/2/08

J.M. Jones

Position :

Authorised By:

Senior Materials Engineer

Date : 19/2/08

Ian Farmer Associates (1998) Limited. Registered in England and Wales No. 3661447 Registered Office: Unit 1, Bamburgh Court, TVTE, Gateshead, Tyne & Wear, NE11 0TX Offices in: Coventry (02476) 456565. Harpenden, Herts. (01582) 460018. Truro (01827) 261775 Warrington (01925) 855440. Newcastle upon Tyne (0191) 4828500. Motherwell (01698) 230231.

Page 1 of 37

: Warren Hall Site - Broughton

: Welsh Assembly Government

Site

Client

Laboratory Test Report - 40274D/1

Job Number 40274D

Page

				DETERMINATION OF MOISTURE CONTENT
Borehole/ Trial Pit	Depth (m)	Sample	Moisture Content %	Description
BH09 BH10 BH11 BH12 BH13	2.00 3.00 1.70 5.50 0.40	U5 U13 D4 D13 B2	15 17 16 40 16	Brown sandy CLAY Brown sightly gravelly CLAY Brown slightly gravelly CLAY
Method of Method of				7.3.3 Preparation of samples for classification tests
Method of Remarks	rest	: BS 1377:F	-ART 2:1990	
itemat No		•		

Site : Warren Hall Site - Broughton

Client : Welsh Assembly Government

Laborator	v Test	Report -	40274D/1
=alserater,	,		

Job Number 40274D

Page

3/37

DETERMINATION OF MOISTURE CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY AND LIQUIDITY INDEX

Borehole/	Denth		Natural	Natural Moisture	Sample 425µm	Passing Sieve	Liquid Limit	Plastic	Plasticity	Liquidity		_
Trial Pit	Depth (m)	Sample	/ Sieved	Content %	Percentage %	Moisture Content %	Limit %	Limit %	Index %	Liquidity Index	Class	Description / Remarks
H09	2.00	U5	Natural	15	96	15	24	14	10	0.10	CL	Brown sandy CLAY
3H10	3.00	U13	Natural	17	90	18	24	17	7	0.14	CL	Brown sandy CLAY
3H11	1.70	D4	Natural	16	94	17	31	18	13	-0.08	CL	Brown slightly gravelly CLAY
BH12	5.50	D13	Natural	40	95	42	65	36	29	0.21	MH	Brown CLAY
BH13	0.40	B2	Natural	16	74	20	35	18	17	0.12	CL/CI	Brown slightly gravelly CLAY
Method	of Prepara	tion : B	S 1377:P/	ART 1:199	0:7.4 Prepa	ration of sa	mples for cl	assification	tests BS 1	377:PART	2:1990:4	.2 & 5.2 Sample preparations
Method	of Test	: B pl	S 1377:P/ asticity in	ART 2:199 dex	0:3.2 Deterr	nination of	moisture co	ontent 4.3 D	eterminatio	n of the liq	uid limit	5.3 Determination of the plastic limit and

Laboratory Test Report - 40274D/1

Job Number 40274D

Page

Client : Welsh Assembly Government

: Warren Hall Site - Broughton

orehole / Frial Pit	Depth (m)	Sample	Pipette/ Hydrometer									I	Desc	riptio	n							
BH11	5.50	B12	Pipette	Brown	SILT / CI	LAY																
I			1 1																		Sieve / Particle Size	% Passing
00					*	*	K	×	×		\square]	200 mm	100
o 🚻					<i>*</i>	++														-	150 mm	100
io				/																	125 mm	100
																					90 mm	100
o 🚻				++/																-	75 mm	100
50 -				\parallel																_	63 mm	100
				VII -																	50 mm	100
50				/														-		1	37.5 mm	100
.0				`																_	28 mm	100
Ŭ II																					20 mm	100
io																					14 mm	100
20																				-	10 mm	100
																					6.3 mm	100
10																				-	5 mm	100
, Ш]	3.35 mm	100
	0.002	0.006	0.02 0.0	6	0.2	0.	6		2	6		2	20	(60	2	00	(600		2 mm	99
CLA	Fine	Mediu	m Coarse	Fine	Med	dium	Coar	se	Fine		Mec	ium	Co	arse	0	BBLES	BOI	ים וו	RS	-	1.18 mm	99
	SIL	Т		SAND)				GR/	AVEL										-	600 µm	99 99
																					425 µm	
																					300 µm	98
																1					212 µm	96
			Grading	Analys	is					Par	ticle	Propo	ortion	IS							150 µm	91
					100.0			\vdash						001		-					63 µm	45
		DE			100.0 µ				Cobble		Boul	ders		0%		-					20 µm	38
		De			100.0 µ	ım			Grave				_	1%		-					6 µm	21
		D1	10		-				Sand				_	55%		-					2 µm	12
								-	Silt					33%		-						
		Ur	niformity Coeffi	cient	-				Clay					12%								

: Warren Hall Site - Broughton

: Welsh Assembly Government

Site

Client

Laboratory Test Report - 40274D/1

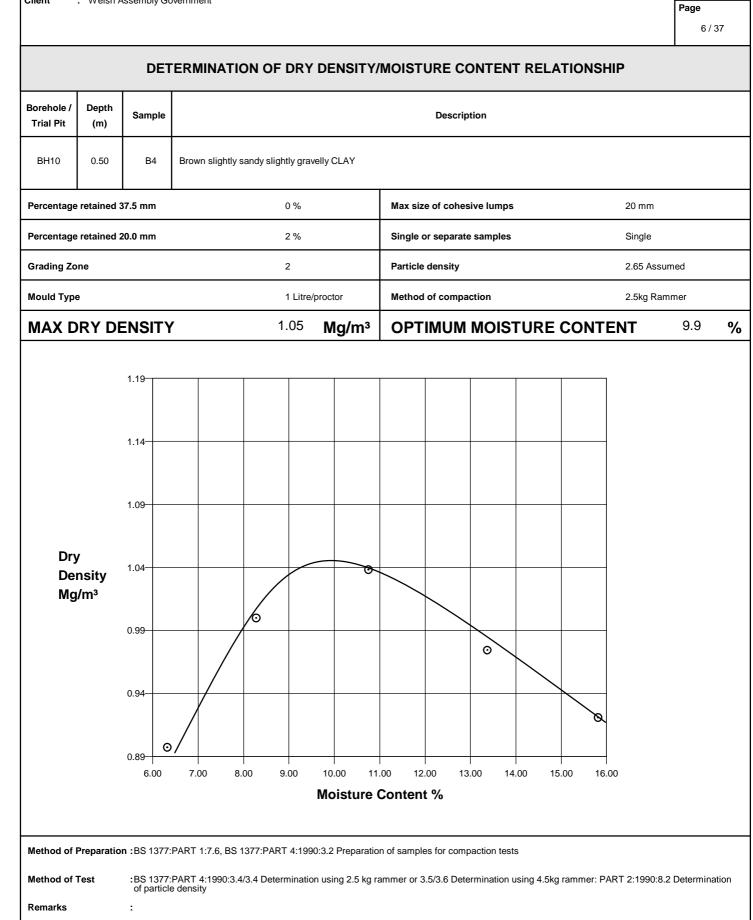
Job Number 40274D

Page

5/37

DETERMINATION OF THE pH VALUE AND THE SULPHATE CONTENT OF SOIL AND GROUNDWATER

				ation of Solubl	e Sulphate	Percentage		
Borehole/ Trial Pit	Depth (m)	Sample	S Total S04 %	oil S04 in 2:1 water:soil g /l	Groundwater g /I	Percentage of sample passing 2mm Sieve %	рН	Description / Remarks
BH09	0.20	B2		0.1		96	7.2	Brown slightly sandy slightly gravelly CLAY
BH09	2.50	D6		0.1		91	7.4	Brown sandy CLAY / SILT
BH10	0.60	D5		0.1		85	7.4	Brown sandy CLAY
BH11	4.00	D10		0.1		84	7.3	Brown sandy CLAY
BH12	0.10	B2		0.1		53	7.4	Brown slightly gravelly SILT / CLAY
BH13	1.70	D4		0.1		93	7.4	Brown SILT / CLAY
Method (1377:PART 3:1990:5.2, 5.3, 5.4 & 9.4 I and ground water BS 1377:PART 3:1990:9 Determination of the pH value



IAN FARMER ASSOCIATES

: Warren Hall Site - Broughton

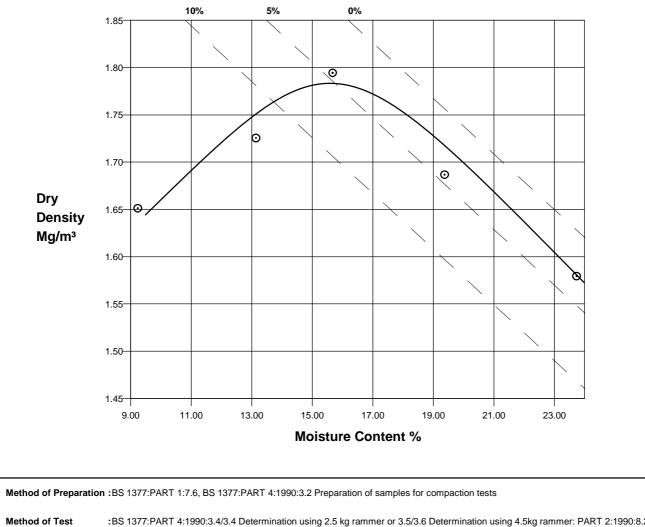
Laboratory Test Report - 40274D/1

Job Number 40274D

ASSOCIATES

: Warren Hall Site - Broughton

Laboratory Test Report - 40274D/1


Job Number 40274D

Client : Welsh Assembly Government

Page 7/37

DETERMINATION OF DRY DENSITY/MOISTURE CONTENT RELATIONSHIP

Borehole / Trial Pit	Depth (m)	Sample			Description		
BH12	1.20	B3	Brown slightly gravelly CLAY				
Percentage	retained	37.5 mm	0 %		Max size of cohesive lumps	20 mm	
Percentage	retained 2	20.0 mm	4 %		Single or separate samples	Single	
Grading Zo	ne		2		Particle density	2.65 Assumed	ł
Mould Type	9		1 Litre/p	proctor	Method of compaction	2.5kg Ramme	r
MAX D	RY DE	ENSITY	7 1.84	Mg/m³	OPTIMUM MOISTURE CONTE	INT	16 %

Remarks

:

:BS 1377:PART 4:1990:3.4/3.4 Determination using 2.5 kg rammer or 3.5/3.6 Determination using 4.5kg rammer: PART 2:1990:8.2 Determination of particle density

Laboratory Test Report - 40274D/1

Job Number 40274D

Page

Client : Welsh Assembly Government

: Warren Hall Site - Broughton

																				8 /
			DE	TERMI	NAT	ION	OF	CALI	FOR	NIA	BEA	RING	G R/	τιο	(CBI	R)				
Borehole / Trial Pit	Depth (m)	Sample	% Passing 20 mm Sieve									Des	scripti	on						
BH13	0.40	B2	99 %	Brown s	lightly	gravell	y CLAN	ſ												
		I		L																
Moisture Co	ontent %																			
Bulk Densit	y Mg/m³	2.	08	1.20		1	1	1		1			1	1	r	1	1			
Dry Density	Mg/m³	1.	75																	
Soaked Tes	t	N	10	1.08																
Test on		п то	OP	0.96						-										
Moisture Co	ontent %	1	9	0.84																
Surcharge v	veight kg			0.84																2
Penetration	mm	2.5	5.0	2 ^{0.72}												bo				
Force kN		0.43	0.63	nger (I												ĬŌ	۳_			
Corrected C	BR %	3.2	3.2	und uc										ᡛ	F					
		-		0.72 (kN) 00.00 bl n b b b b b b b b b b						t	56	98		<u>8</u> 8 f						
Test on		О ВОТ									P									
Moisture Co		1	9	0.36			<u> </u>		<u>₩0</u> ⊅	ſ				1						
Surcharge v				0.24		ļ .														
Penetration	mm	2.5	5.0																	
Force kN		0.38	0.65	0.12																
Corrected C	BR %	2.9	3.2	0.00																
		ТОР	воттом			.50 1	.00 1	.50 2	.00 2					.50 5. ger (m i		50 6	.00 6	.50 7	00 7.	50 8.00
Test on										-		5.			•					
Test on Reported C	BR %	3.2	3.2																	

Laboratory Test Report - 40274D/1

Job Number 40274D

Client : Welsh Assembly Government

: Warren Hall Site - Broughton

Site

Page 9 / 37

rehole / rial Pit	Depth (m)	Sample					Descrip	tion	
3H10	3.00	U13	Brown sandy CLA	Y					
len		Length	of Sample (mm)		450	Max Deviator Stress (kPa)	90 - 80 - 70 - 60 -		
pecin		Depth f	rom top of sample ((mm)	50	Str	50 -		
Initial Specimen		Conditi	on of Sample:	Undisturbe	ed	to			
Г		Orienta	tion:	Vertical		via,	40 -		
Test Ty	ре			Single Sta	ge	De	30 -		
Length	of Specim	en (mm)		209.2		lax	20 -		
Diamet	er of Speci	men (mm)		101.5		≥	10 -		
Moistu	isture Content (%) k Density (Mg/m³)			13			ľ		
Bulk De	k Density (Mg/m³)			2.27			0 + 0	5 10 15	20 2
Dry Der	nsity (Mg/n	n³)		2.00				Strain %	
Membra	ane Thickn	ess (mm)		0.4					
Membra	ane Type			Latex					
Rate of	Strain (%/	min)		1.91					
Me	asured Ce	II Pressure ((kPa)	40					
<u>ي</u> Str	ain at Failı	ıre (%)		7.2					
Test Results	mbrane Co	orrection (kl	Pa)	0.6					
oO Test	rrected De	viator Stres	s (kPa)	90					
She	ear Stress	(kPa)		45					
Мо	de of Failu	ire (B/P/C)		Plastic		1			

Laboratory Test Report - 40274D/1

Job Number

Client : Welsh Assembly Government

: Warren Hall Site - Broughton

40274D

Page 10 / 37

ial Pit	Depth (m)	Sample					Dese	scription
H11	1.20	U3	Brown slight	ly gravelly CLAY				
						Max Deviator Stress (kPa)	210 189 168 147	9 - 8 -
men			of Sample (m		450	es	126	
Initial Specimen			rom top of sa		50	ST	120	
nitial S			on of Sample:			tor	105	
		Orienta	tion:	Vertical			84	
Test Ty				Single Sta	je	Ő	63	1/
	of Specim			209.4		Ma)	42	
	ameter of Specimen (mm) 101.1 pisture Content (%) 15					_	21	-//
	sture Content (%) 15 k Density (Mg/m³) 2.23						0	· · · · · · · · · · · · · · · · · · ·
	isity (Mg/n	-		1.94				0 5 10 15 20 3 Strain %
-	ne Thickn			0.41				Ottain /
	ine Type			Latex				
	Strain (%/	min)		1.91				
		I Pressure ((kPa)	25				
رم Stra	ain at Failu	ıre (%)		13.8				
Test Results	mbrane Co	orrection (kl	Pa)	1.2				
Cor	rected Dev	viator Stres	s (kPa)	206				
	ar Stress	(kPa)		103				
Мо	de of Failu	re (B/P/C)		Plastic				

Laboratory Test Report - 40274D/1

Job Number 40274D

Client : Welsh Assembly Government

: Warren Hall Site - Broughton

Page 11 / 37

ehole / ial Pit	Depth (m)	Sample					Desc	ription
3H11	10.00	U22	Brown sligh	tly gravelly CLAY				
Initial Specimen		Depth fi	of Sample (n rom top of sa on of Sample	ample (mm)	450 50 ed	Max Deviator Stress (kPa)	198 176 154 132 110	
		Orientat	tion:	Vertical		ei ve	88	
Test Typ		a.m. (mama)		Single Sta	je	Ď	66	-
	of Specim	men (mm)		209		Ma	44	-
	e Content			77			22	-/
	nsity (Mg/i			2.29			0	0 5 10 15 20 2
	sity (Mg/m	-		1.29				Strain %
-	ne Thickn	-		0.34				
Membra	ine Type			latex				
Rate of	Strain (%/r	min)		1.44				
Меа	asured Cel	l Pressure ((kPa)	200				
ي Stra	ain at Failu	ıre (%)		17.7				
~	mbrane Co	orrection (kl	Pa)	1.2				
	rected Dev	viator Stres	s (kPa)	211				
She	ear Stress ((kPa)		106				
Мос	de of Failu	re (B/P/C)		Brittle				

Laboratory Test Report - 40274D/1

Job Number

Client : Welsh Assembly Government

: Warren Hall Site - Broughton

40274D

Page 12 / 37

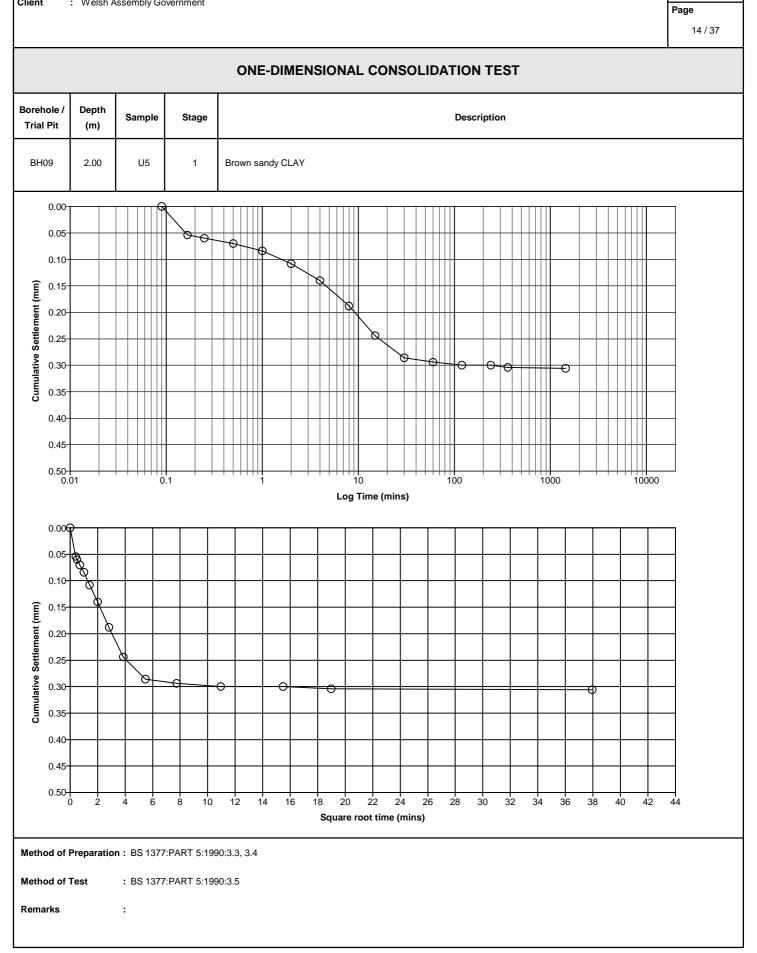
rehole / rial Pit	Depth (m)	Sample					Desc	cription
BH13	1.20	U3	Brown CLAY	,				
Diamete Moistur	of Specim	en (mm) (%)	of Sample (m rom top of sa on of Sample: tion:	mple (mm)	l age	Max Deviator Stress (kPa)	210 189 168 147 126 105 84 63 42 21 0	
Dry Den	nsity (Mg/n	n³)		1.85				Strain %
	ane Thickn	ess (mm)		0.34				
	ane Type			latex				
	Strain (%/			1.44				
		II Pressure	(kPa)	25				
÷∺	ain at Failu			13.9				
		viator Stres		205				
	ear Stress			102				
	de of Failu			Brittle				
ethod of I	-	Prepara : BS 1377	tion of disturbe 7:PT2:1990:3.2 :PT7:1990:8.4	d samples for te	sting. If moisture	content. BS 13	77:PT2	eparation of undisturbed samples for testing or BS 1377:PT1:1990 :7.7.5.2 F2:1990:7.2 Determination of density by linear measurement and axial compression without measurement of pore pressure (definitive

: Warren Hall Site - Broughton

Site

Laboratory Test Report - 40274D/1

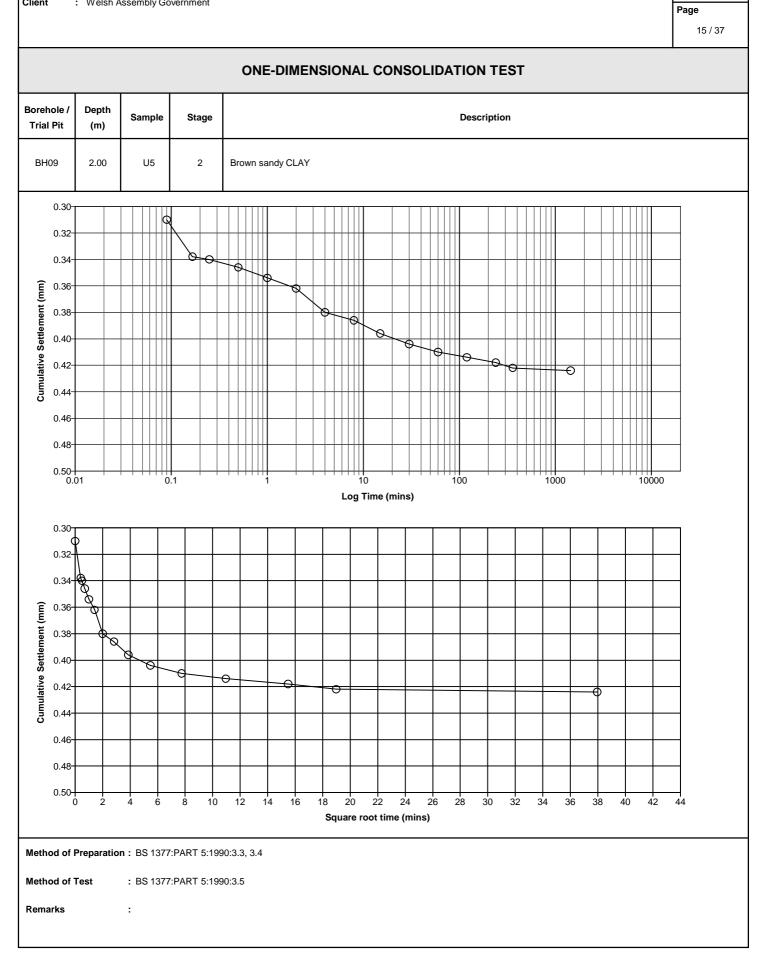
Job Number


40274D

Client : Welsh Assembly Government Page 13/37 **ONE-DIMENSIONAL CONSOLIDATION TEST** Borehole / Depth Sample Description Trial Pit (m) BH09 2.00 U5 Brown sandy CLAY Length of Sample (mm) 450 Specimen Depth from top of sample (mm) 50 Condition of Sample: Undisturbed Initial Orientation: Vertical 0.33 ¢ Diameter (mm) 75.00 2.65 Particle Density (Mg/m³) (Assumed) 0.32 Swelling Pressure (kN/m²) Lab Temp (°C) 19 0.31 Inital Final **VOID RATIO** 0.30 Height (mm) 19.00 18.38 Wet Weight (g) 182.74 184.45 0.29 7.49 Moisture Content (%) 14 Bulk Density (Mg/m³) 2.20 2.25 G 0.28 Dry Density (Mg/m³) 1.93 2.09 Void Ratio 0.373 0.268 0.27 Degree of Saturation (%) 100.17 74.06 0.26 10 100 PRESSURE kN/m² Pressure Μv Cv Void Pressure Μv Cv Void kN/m² m²/MN m²/year Ratio kN/m² m²/MN m²/year Ratio 0.55 0.329 30 6.5 0.312 60 0.21 7.5 0.280 160 0.12 24 260 0.07 18 0.262 0.03 0.283 30 36 Method of Preparation: BS 1377:PART 5:1990:3.3, 3.4 : BS 1377:PART 5:1990:3.5 Method of Test Remarks :

: Warren Hall Site - Broughton

Client : Welsh Assembly Government



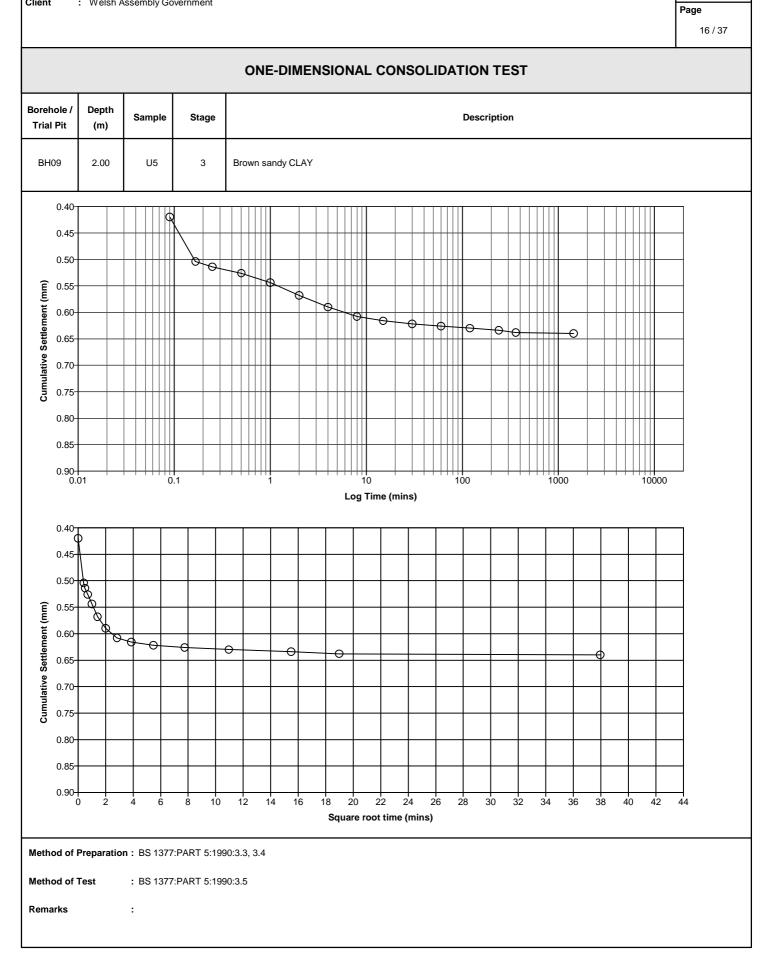
Job Number

: Warren Hall Site - Broughton

Client : Welsh Assembly Government

Laboratory Test Report - 40274D/1

Job Number 40274D

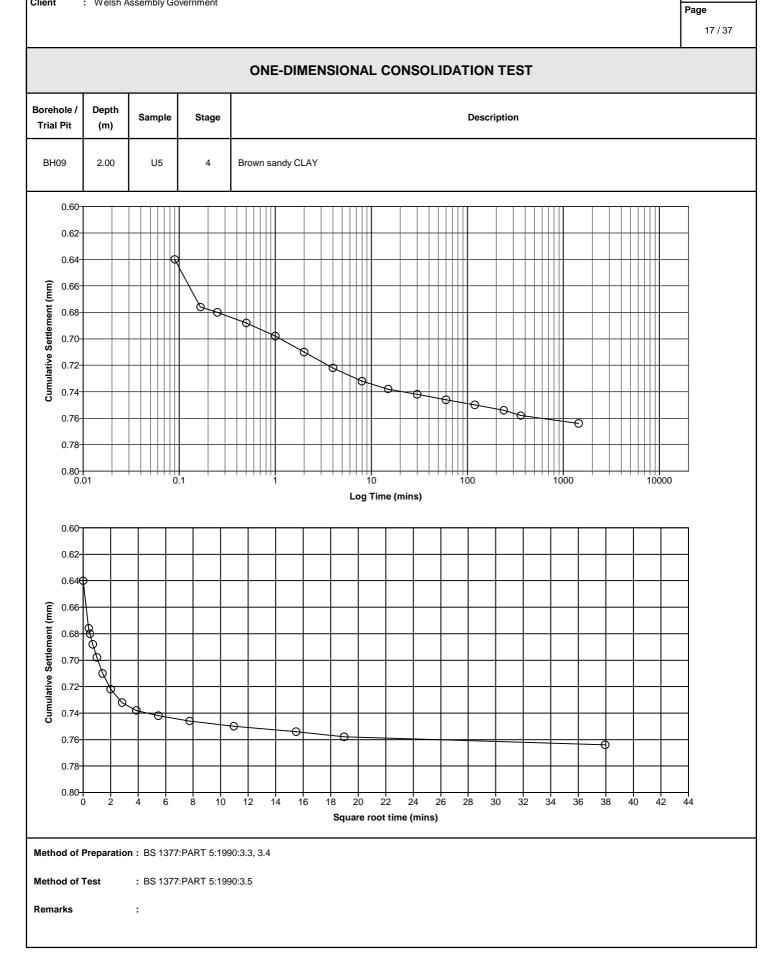

ASSOCIATES

: Warren Hall Site - Broughton

Laboratory Test Report - 40274D/1

Job Number 40274D

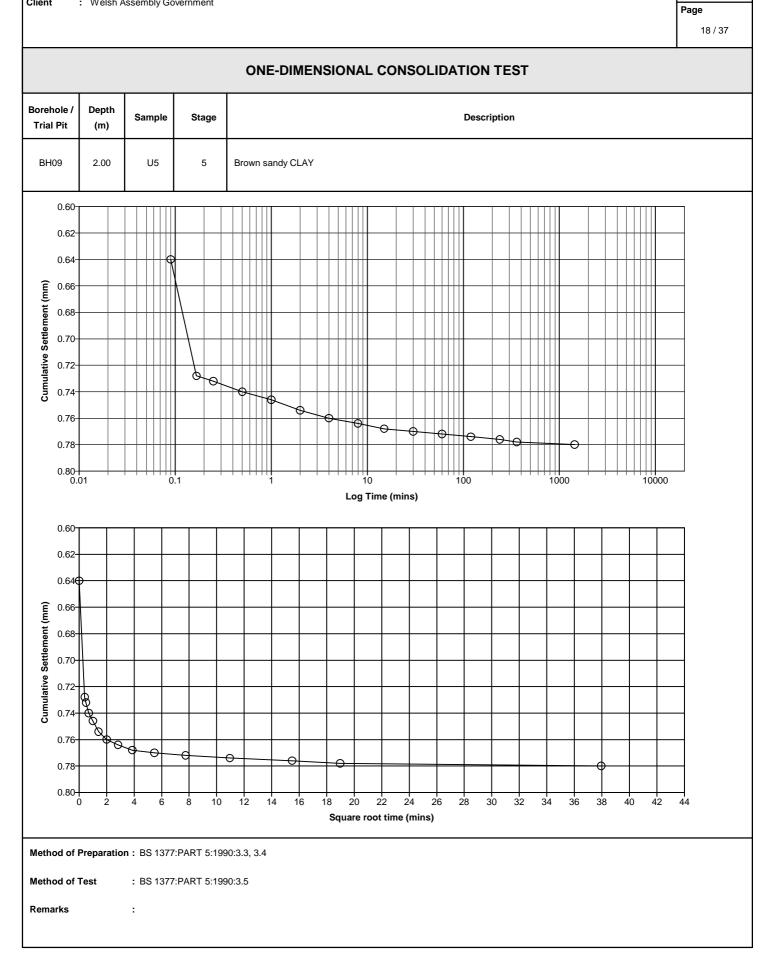
Client : Welsh Assembly Government



: Warren Hall Site - Broughton

Laboratory Test Report - 40274D/1

Job Number 40274D


Client : Welsh Assembly Government

: Warren Hall Site - Broughton

Client : Welsh Assembly Government

Laboratory Test Report - 40274D/1

Job Number

: Warren Hall Site - Broughton

Client : Welsh Assembly Government

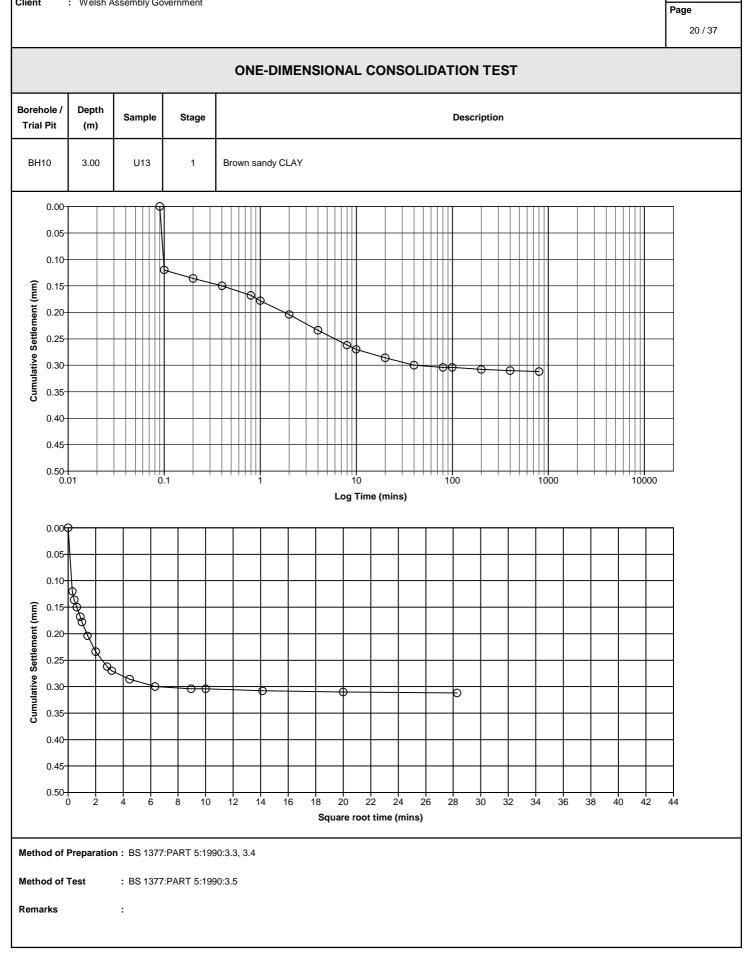
		1		ONE	-DIM	ENSI		NSOL	IDATION	IESI			
hole / Il Pit	Depth (m)	Sample	e						Description				
H10	3.00	U13	Brown	sandy CLAY									
r.		Lengt	th of Samp	le (mm)			450						
scim	Z	Depth	n from top	of sample (mm	n)		50						
Initial Specimen		Cond	ition of Sa	mple:	Und	disturbed							
Initié			tation:		V	/ertical							
	Diama	ter (mm)		75.00		Г							
			(2)	2.65									
	article Dei			(Assumed)		0.30			\rightarrow	\mathbb{K}^+			
S	velling Pre		v/m²)							$ \times $			
	Lab Te	emp (°C)		19		0.28				R			
			Inital	Final	0	0.26					\mathbb{N}		
H	leight (mm)		19.00	18.00	VOID RATIO								
We	t Weight (g)	186.58	186.27	ID R	0.24					$\uparrow \uparrow \uparrow \uparrow$	\backslash	
Moistu	ure Conter	nt (%)	14	8.30	N N	0.22							
Bulk D	Density (M	g/m³)	2.22	2.34		5.22			A				
Dry D	ensity (Mg	g/m³)	1.94	2.16		0.20					\downarrow \downarrow \downarrow \downarrow \downarrow	Q	
۱ ۱	/oid Ratio		0.366	0.227								\ 	
Degree	of Saturati	ion (%)	104.26	96.89		0.18							
													D
						0.16 1	0					00	-
	Г	Drocosta		0	<u> </u>	Void	1					Vaid	
		Pressure kN/m ²	M∨ m²/MI	Cv N m²/year		Void Ratio			Pressure kN/m²	M∨ m²/MN	Cv m²/year	Void Ratio	
	Ĺ	30	0.56	18	0).314	ļ						
	F	60	0.40).278	-						
	\vdash	160	0.28		_	0.206	-						
	⊢	260	0.14).166	-						
	\vdash	30	0.07	72).215	{						

Laboratory Test Report - 40274D/1

Job Number

Page

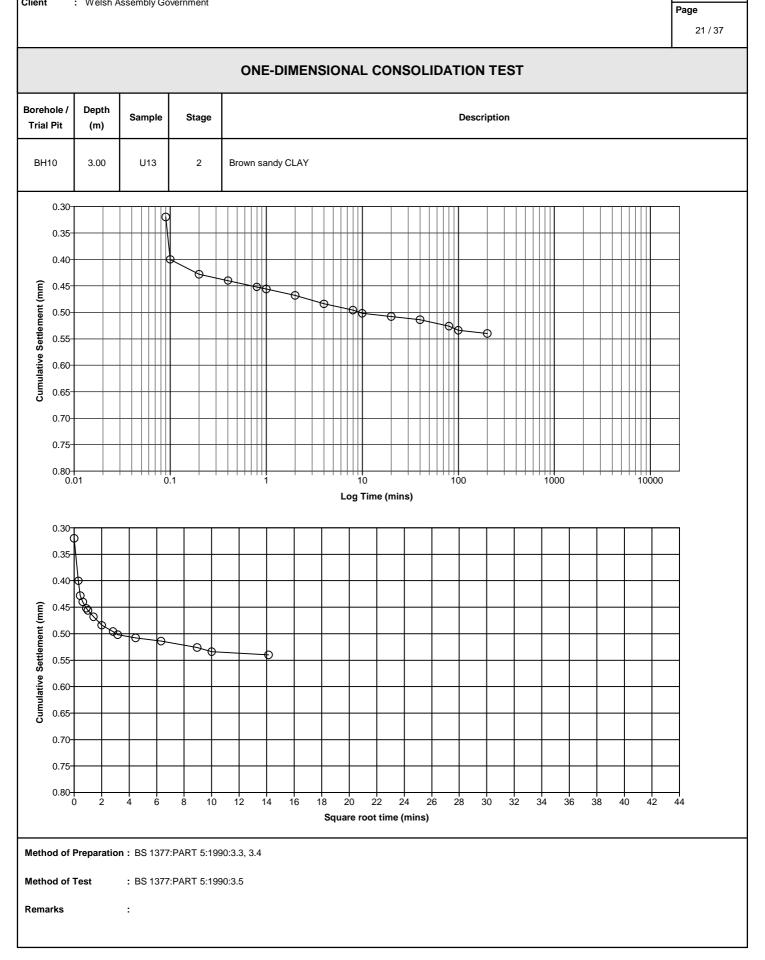
40274D


Remarks

:

: Warren Hall Site - Broughton

Client : Welsh Assembly Government

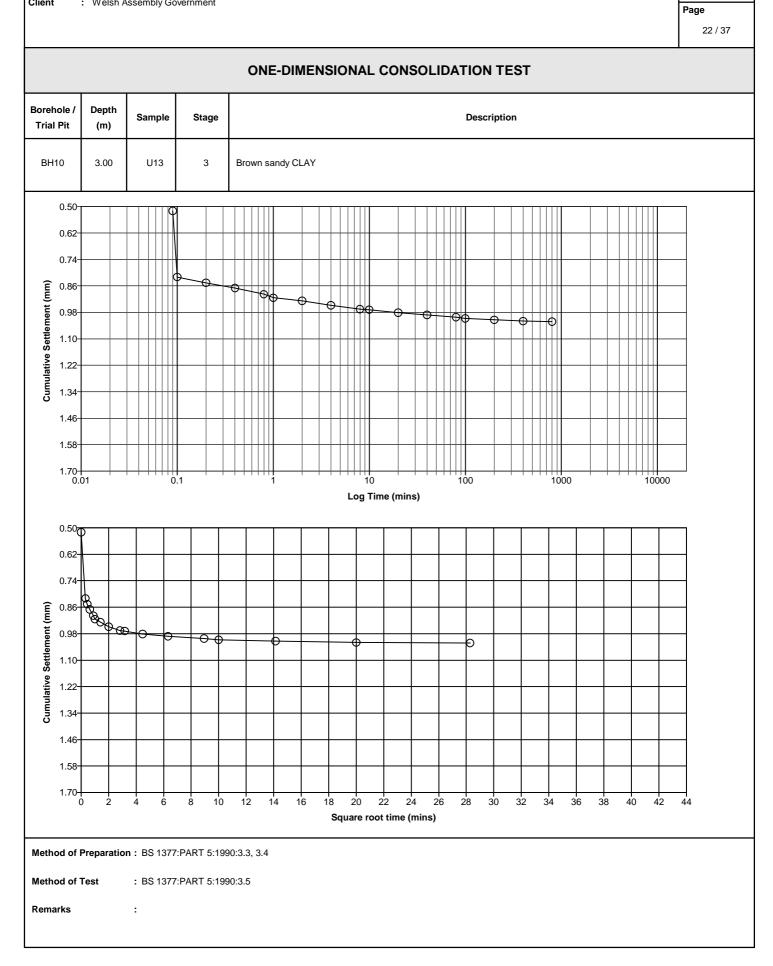

Laboratory Test Report - 40274D/1

Job Number

: Warren Hall Site - Broughton

Client : Welsh Assembly Government

Job Number

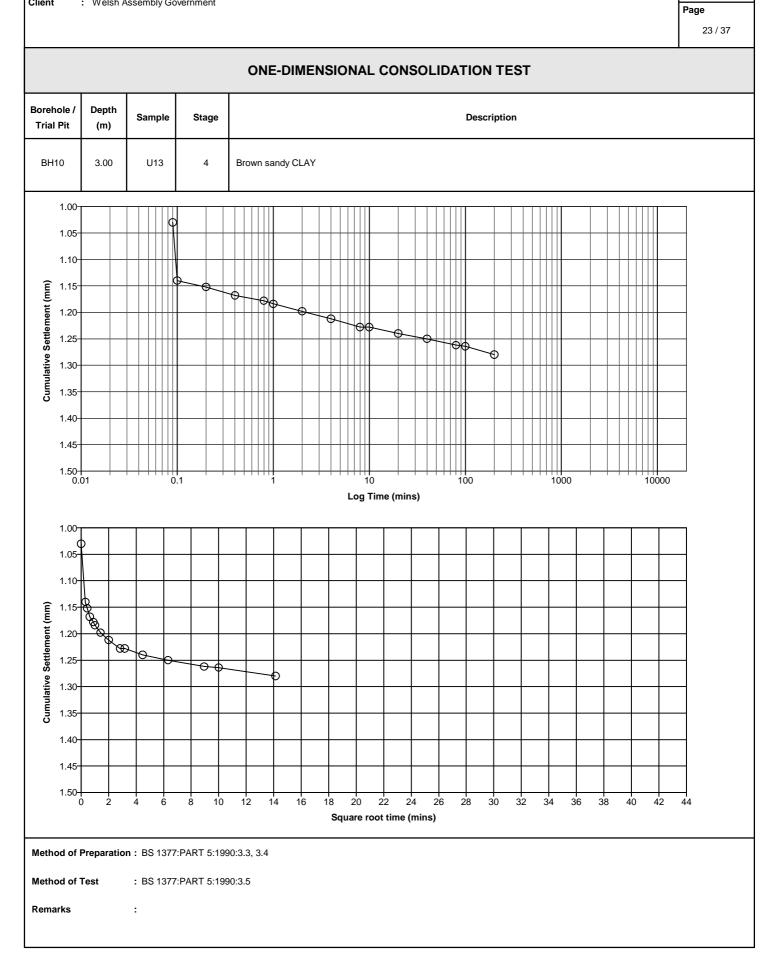

ASSOCIATES

: Warren Hall Site - Broughton

Laboratory Test Report - 40274D/1

Job Number 40274D

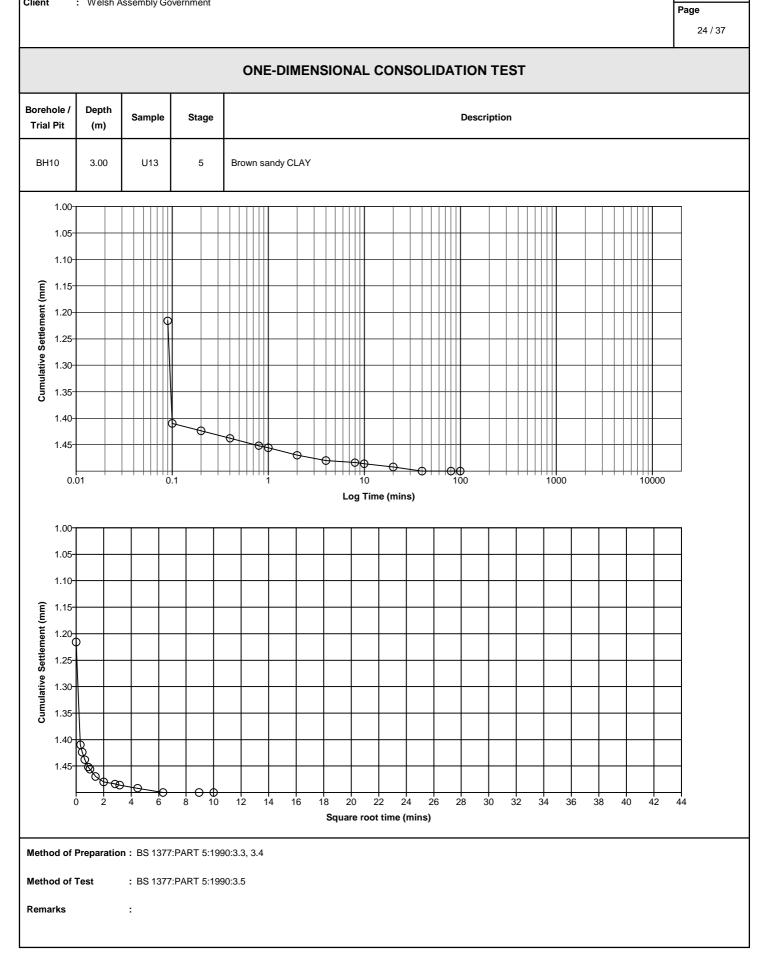
Client : Welsh Assembly Government



ASSOCIATES

: Warren Hall Site - Broughton

Laboratory Test Report - 40274D/1


Client : Welsh Assembly Government

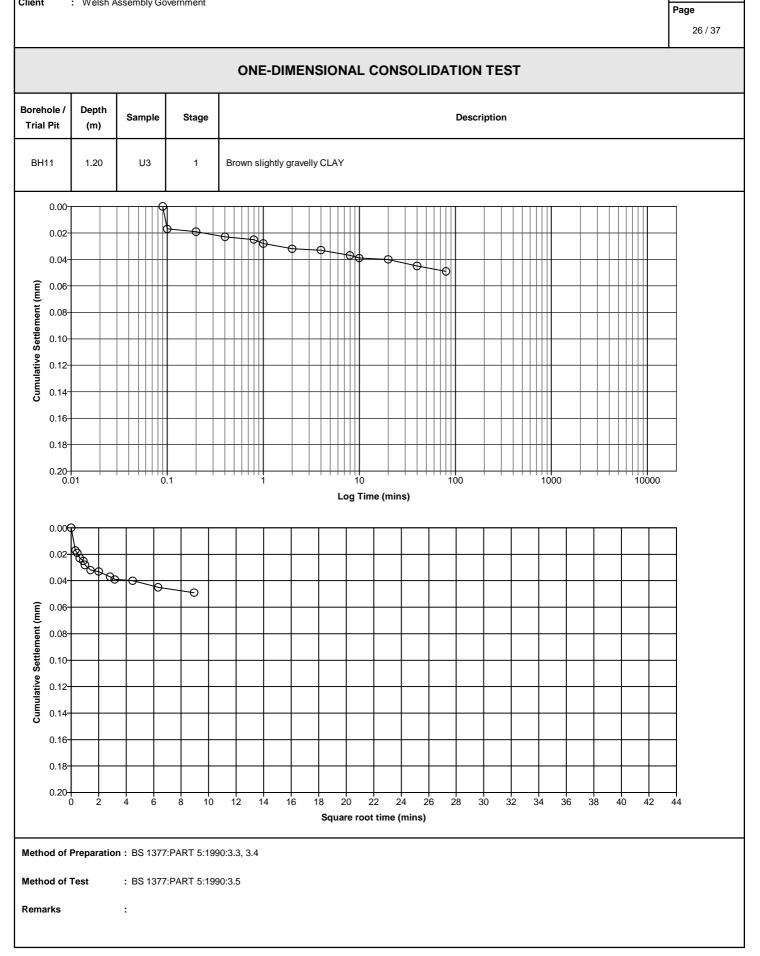
: Warren Hall Site - Broughton

Client : Welsh Assembly Government

Laboratory Test Report - 40274D/1

Job Number

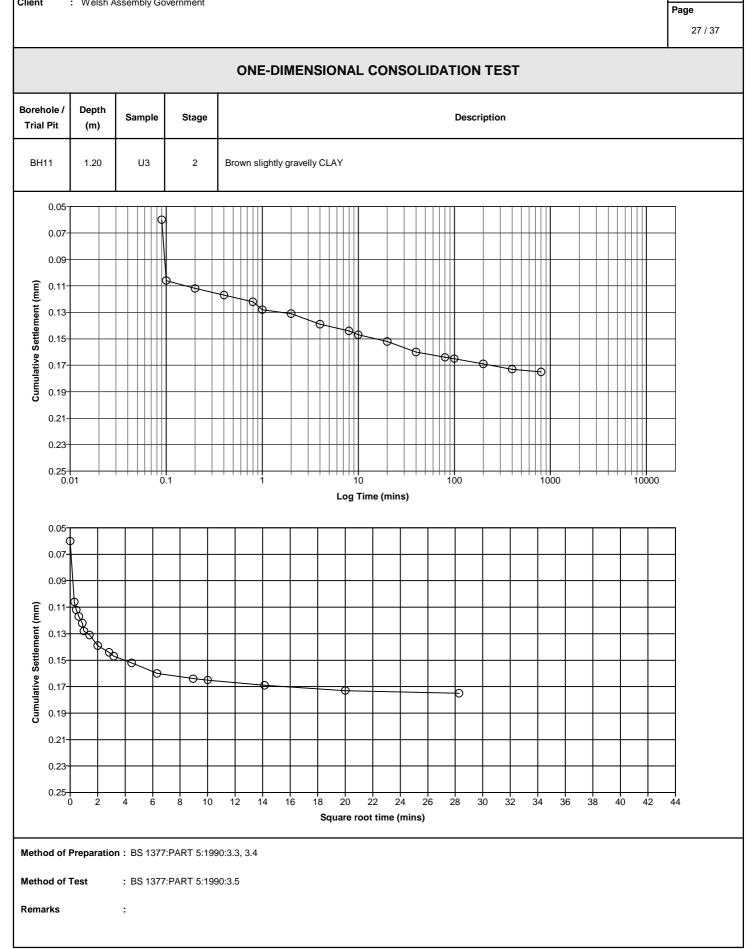
: Warren Hall Site - Broughton


Client : Welsh Assembly Government

Page 25 / 37 **ONE-DIMENSIONAL CONSOLIDATION TEST** Borehole / Depth Sample Description Trial Pit (m) BH11 U3 1.20 Brown slightly gravelly CLAY Length of Sample (mm) 450 Specimen Depth from top of sample (mm) 50 **Condition of Sample:** Undisturbed Initial Orientation: Vertical 0.45 Diameter (mm) 75.00 2.65 0.44 Particle Density (Mg/m³) (Assumed) Swelling Pressure (kN/m²) 0.43 Lab Temp (°C) 19 0.42 0.41 Inital Final **VOID RATIO** 0.40-Height (mm) 19.00 18.57 Wet Weight (g) 177.41 178.06 0.39 Moisture Content (%) 15 9.24 0.38 Bulk Density (Mg/m³) б 2.11 2.17 0.37 Dry Density (Mg/m³) 1.83 1.99 Void Ratio 0.448 0.332 0.36 Degree of Saturation (%) 91.09 73.75 0.35 0.34 10 100 PRESSURE kN/m² Pressure Μv Cv Void Pressure Μv Cv Void kN/m² m²/MN m²/year Ratio kN/m² m²/MN m²/year Ratio 0.09 0.440 30 42 0.420 60 0.21 14 0.377 160 0.14 34 260 0.10 20 0.346 0.04 0.381 30 12 Method of Preparation: BS 1377:PART 5:1990:3.3, 3.4 : BS 1377:PART 5:1990:3.5 Method of Test Remarks :

: Warren Hall Site - Broughton

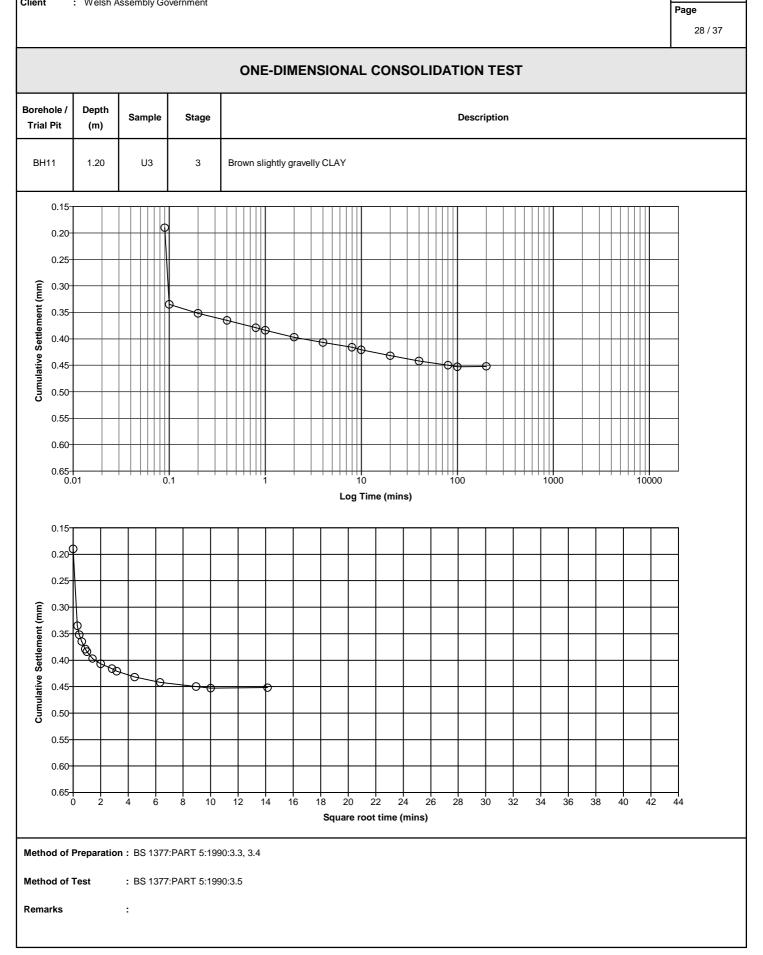
Client : Welsh Assembly Government



Job Number

: Warren Hall Site - Broughton

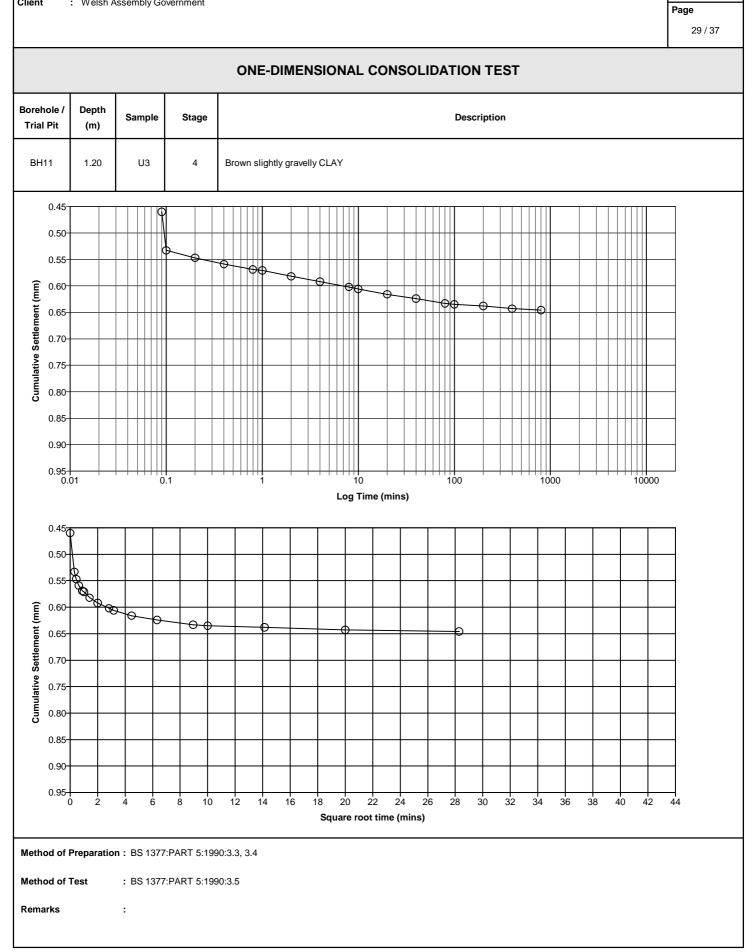
Client : Welsh Assembly Government



Job Number

: Warren Hall Site - Broughton

Client : Welsh Assembly Government

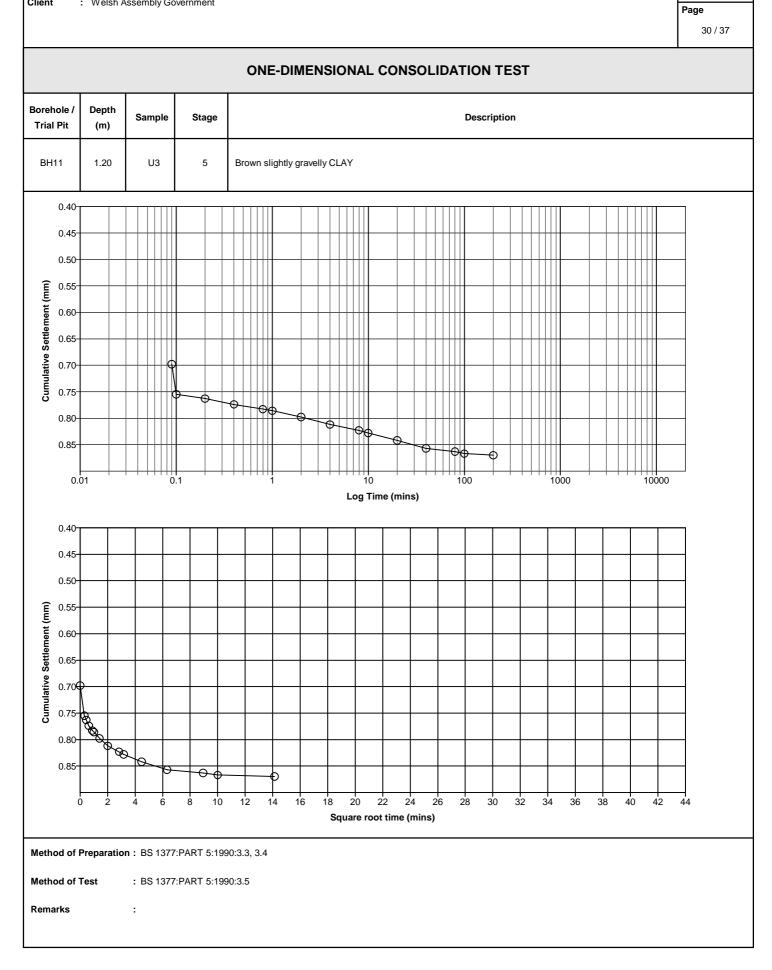


Job Number

: Warren Hall Site - Broughton

Client : Welsh Assembly Government

Job Number



IAN FARMER ASSOCIATES

: Warren Hall Site - Broughton

Laboratory Test Report - 40274D/1

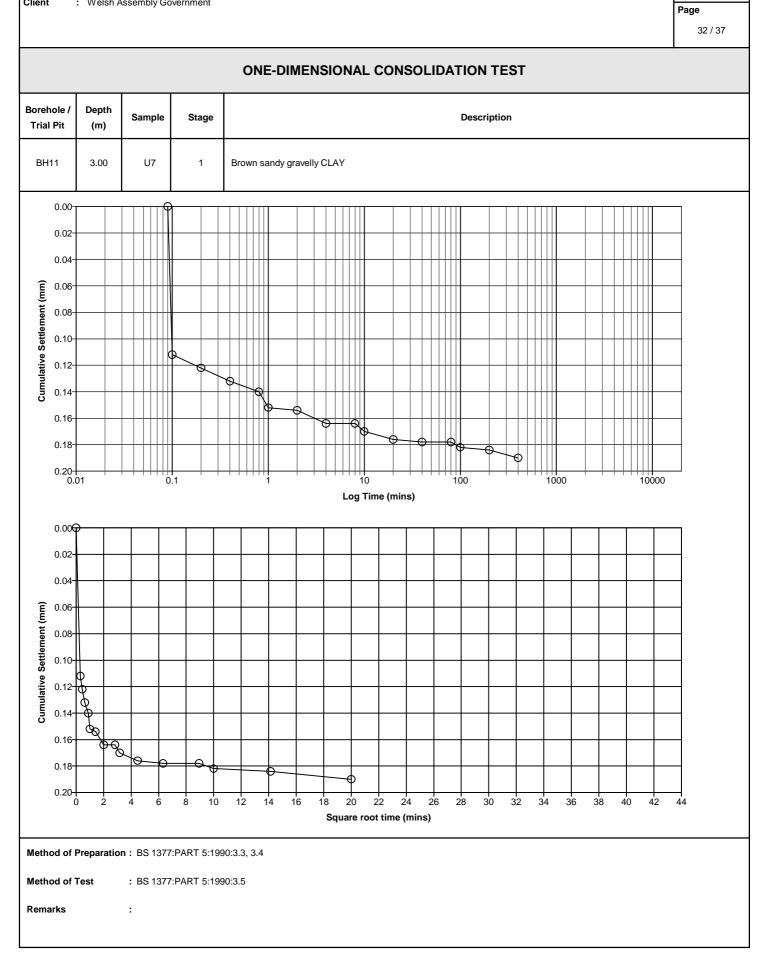
Client : Welsh Assembly Government

: Warren Hall Site - Broughton

Client : Welsh Assembly Government

													31 /
				ON	E-DI	MENSIC	ONAL COM	NSOI	IDATION	TEST			
rehole / rial Pit	Depth (m)	Sample	e						Description				
BH11	3.00	U7	Brown	sandy gravelly	CLAY								
L.		Leng	th of Samp	le (mm)			450						
Initial Specimen		Depth	n from top	of sample (m	m)		50						
al Sp		Cond	ition of Sa	mple:	ι	Indisturbed							
Initi		Orien	tation:			Vertical							
	Diamete	or (mm)		75.00		Г			- Q				
Pa	rticle Dens		(m ³)	2.65		0.27			\rightarrow				
	elling Pres			(Assumed)									
	Lab Ten		,	19		0.25							
				10									
Γ		Inital	Final	0	0.23					+N+			
Hei	Height (mm)		19.00	18.31	ATIC						N		
Wet	Weight (g)	187.98	189.46	VOID RATIO	0.21-						\setminus	
Moistur	e Content	: (%)	11	6.44	NOI							\backslash	
Bulk De	ensity (Mg/	/m³)	2.24	2.34		0.19						<u> </u>	
Dry De	nsity (Mg/	′m³)	2.03	2.20		0.10						\backslash	
Vc	oid Ratio		0.305	0.205									XI
Degree of	f Saturatio	on (%)	91.23	83.25		0.17						$\overline{}$	
				·,									\searrow
						0.15 1	0					00	+ •
	_								PRI	ESSURE	kN/m²		
		Pressure kN/m²	Mv m²/Mi	Cv N m²/yea	ır	Void Ratio			Pressure kN/m²	Mv m²/MN	C∨ m²/year	Void Ratio	
		30	0.34	49		0.277							
		60	0.33			0.250							
		160	0.22			0.193							
		260	0.15		-+	0.153							
	-	30	0.09	80	-+	0.208							
				4000.0.0.0.			l				I	1	
ethod of P	reparation	1: BS 13	977:PART 5	:1990:3.3, 3.4									
lethod of Te	est	: BS 13	877:PART 5	:1990:3.5									
emarks		:											

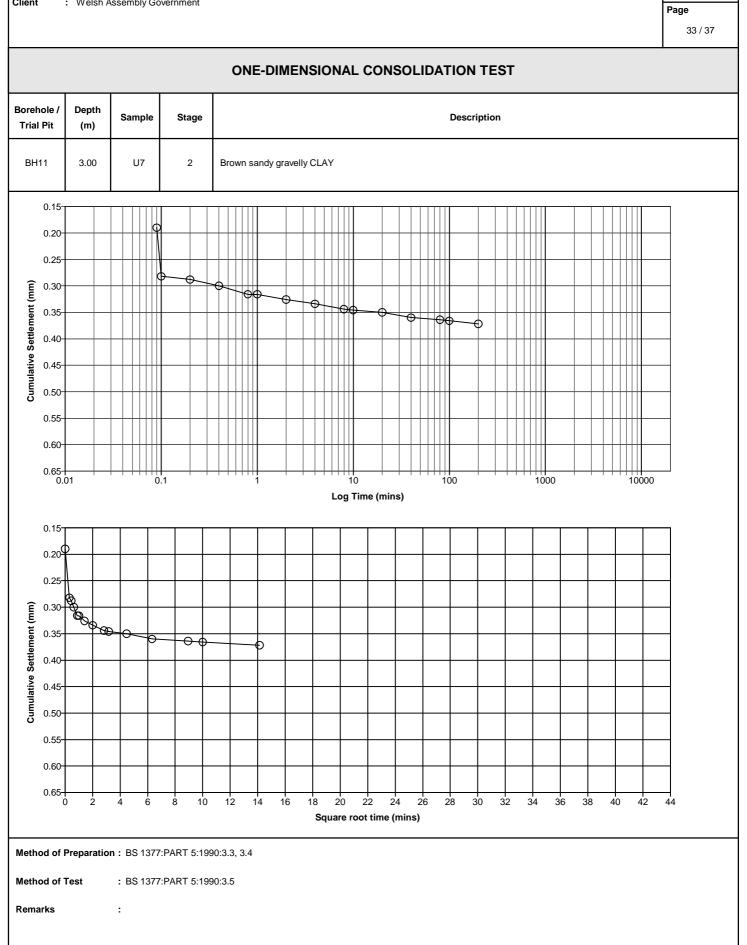
Laboratory Test Report - 40274D/1


Job Number 40274D

Page

: Warren Hall Site - Broughton

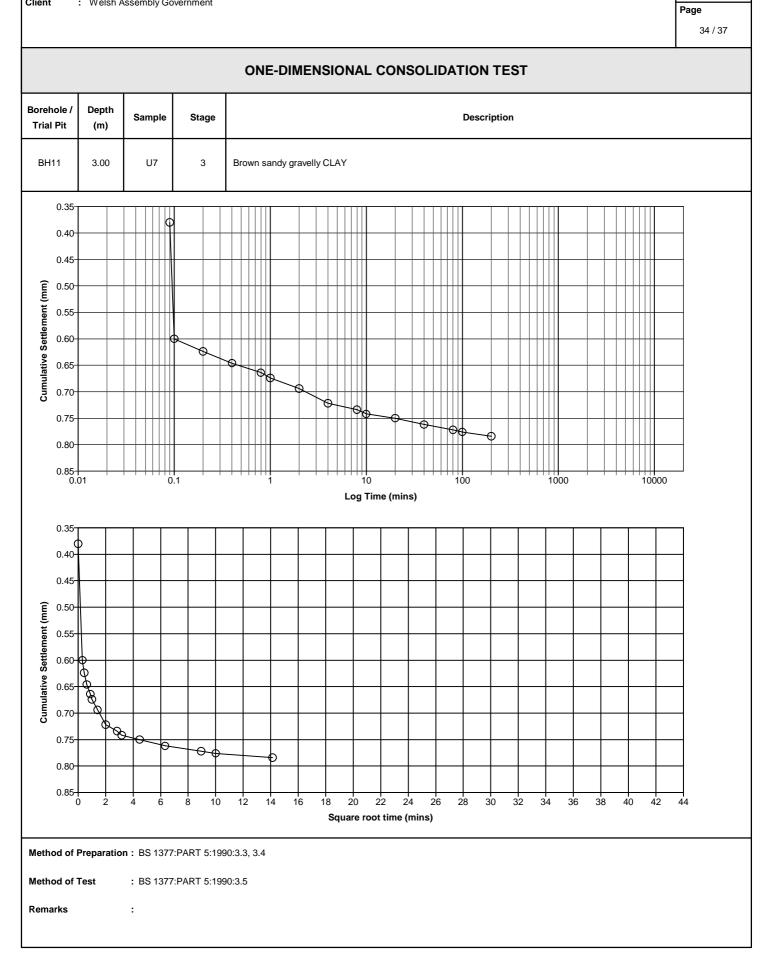
Client : Welsh Assembly Government



Job Number

: Warren Hall Site - Broughton

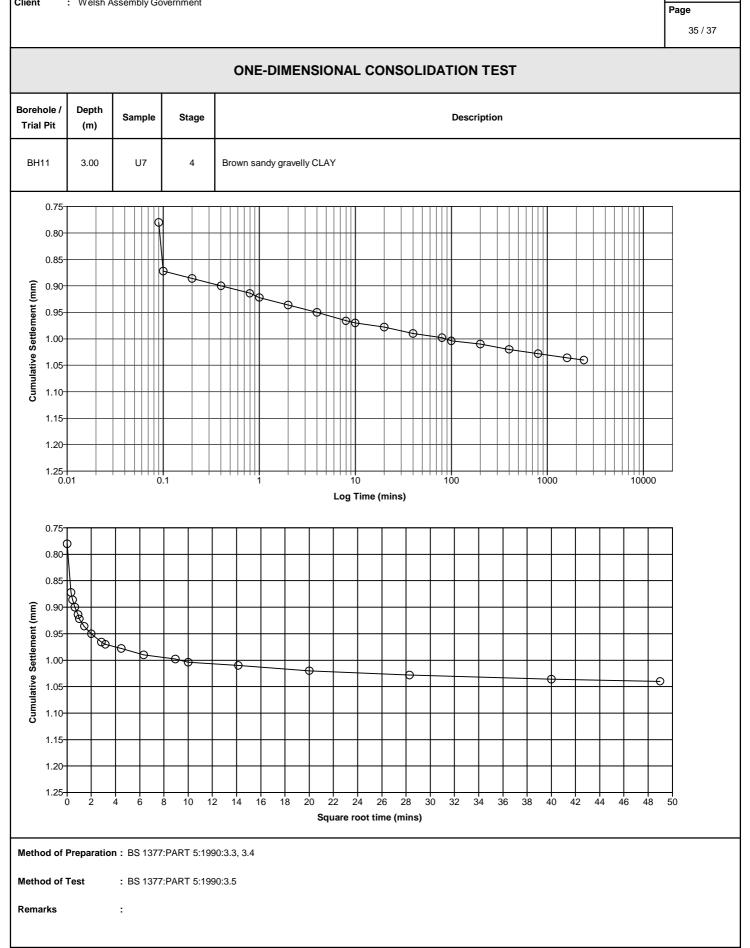
Client : Welsh Assembly Government



Job Number

: Warren Hall Site - Broughton

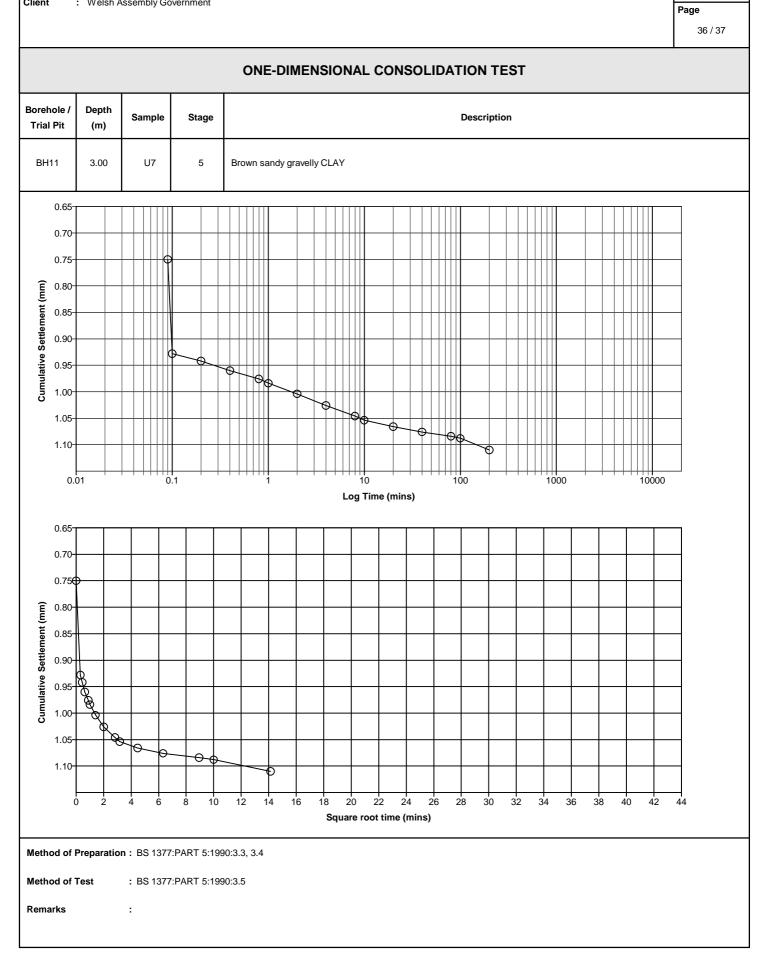
Client : Welsh Assembly Government


Laboratory Test Report - 40274D/1

Job Number 40274D

: Warren Hall Site - Broughton

Client : Welsh Assembly Government



Job Number

: Warren Hall Site - Broughton

Client : Welsh Assembly Government

Laboratory Test Report - 40274D/1

Job Number 40274D

Test Report :

40274D/1

Site : Job Number : Originating Client : Warren Hall Site - Broughton 40274D Welsh Assembly Government

All opinions and interpretations contained within this report are outside of our Scope of Accreditation.

The following tests contained within this report are not UKAS Accredited. One - Dimensional Consolidation

Date of Issue :

19/2/08

Geotechnical & Environmental Specialists

14 Faraday Close, District 15, Pattinson North Industrial Estate, Washington, Tyne & Wear, NE38 8QJ. Tel. 0191 4166375 Fax. 0191 4191578 Email. lab@ifawashington.co.uk Internet.www.ianfarmerassociates.co.uk

Ian Farmer Associates (1998) Ltd 17 Rivington Court Warrington Cheshire WA1 4RT

F.A.O. Mr A Latimer

TEST REPORT - 40274E/1

Job Number : 40274E

Originating Client : Welsh Assembly Government

Originating Reference : 40274E

Date Sampled : Not Given

Date Scheduled : 25.01.08

Date Testing Started : 1/2/08

Date Testing Finished :

Remarks :

- First Report for above Job Number
- Samples will be disposed of 28 days after the report is issue unless otherwise agreed
- This report may contain results from tests which are not included within the scope of the UKAS accreditation. Please see final sheet for details.

19/2/08

J.M. Jones

Position :

Authorised By:

Senior Materials Engineer

Date : 19/2/08

Ian Farmer Associates (1998) Limited. Registered in England and Wales No. 3661447 Registered Office: Unit 1, Bamburgh Court, TVTE, Gateshead, Tyne & Wear, NE11 0TX Offices in: Coventry (02476) 456565. Harpenden, Herts. (01582) 460018. Truro (01827) 261775 Warrington (01925) 855440. Newcastle upon Tyne (0191) 4828500. Motherwell (01698) 230231.

Page 1 of 15

: Warren Hall Site - Broughton

: Welsh Assembly Government

Site

Client

Laboratory Test Report - 40274E/1

Job Number

40274E

Page

				DETERMINATION OF MOISTURE CONTENT
Borehole/ Trial Pit	Depth (m)	Sample	Moisture Content %	Description
BH14 BH16 BH17	1.20 1.20 1.20	B3 U3 D5	15 22 22	Brown slightly garwely CLAY Brown slightly sandy CLAY
Method of Method of				7.3.3 Preparation of samples for classification tests 3.2 Determination of oven dried moisture content
Remarks		:		

Site : Warren Hall Site - Broughton

Client : Welsh Assembly Government

Job Number 40274E

Page

3/15

DETERMINATION OF MOISTURE CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY AND LIQUIDITY INDEX

Berthole fried Depth fried Natural Sieved Natural Viewed Natural Vi
BH14 1.20 B3 Natural 15 95 16 25 15 10 0.10 CL Brown slightly sandy CLAY BH16 1.20 U3 Natural 22 94 23 40 22 18 0.06 CI Brown slightly gravelly CLAY
BH17 1.20 D5 Natural 22 79 27 23 15 8 1.50 CL Brown slightly sandy CLAY
Method of Preparation : BS 1377:PART 1:1900:7.4 Preparation of samples for classification tests BS 1377:PART 2:1900:4.2 & 5.2 Sample preparations

: Warren Hall Site - Broughton

Client : Welsh Assembly Government

Job Number 40274E

Page 4 / 15

DETERMINATION OF MOISTURE CONTENT / BULK DENSITY / DRY DENSITY

Borehole/ Trial Pit	Depth (m)	Sample	Moisture Content %	Bulk Density (Mg/m³)	Dry Density (Mg/m³)	Description / Remarks
BH16	1.20	U3	18	1.9	1.60	Brown slightly gravelly CLAY
Method of	Preparation	BS 1377:F	PART 1:1990	8.2,8.3,8.4		
Method of			PART 2:1990		tion of Densit	ty

: Warren Hall Site - Broughton

: Welsh Assembly Government

Site

Client

Laboratory Test Report - 40274E/1

Job Number 40274E

Page

5/15

DETERMINATION OF THE pH VALUE AND THE SULPHATE CONTENT OF SOIL AND GROUNDWATER

				ation of Solubl		of sample		
orehole/ rial Pit	Depth (m)	Sample	Total S04 %	oil S04 in 2:1 water:soil g /l	Groundwater g /I	Percentage of sample passing 2mm Sieve %	рН	Description / Remarks
3H15	2.60	W9			0.07		8.2	
3H17	3.00	B9		0.2		94	6.8	Brown SAND
othod	of Property		3 1377·DADT	1.1000.7 5 0	enaration of an	il for chamica	Ltosto DC	- 1377:PART 3:1990:5.2, 5.3, 5.4 & 9.4
eniou	or Frepara		J IJII.FARI	1.1990.7.3 PI	eparation of SC		1 10313 03	10//.i AIXI 0.1000.0.2, 0.0, 0.4 & 0.4

Laboratory Test Report - 40274E/1

Job Number 40274E

Page

: Warren Hall Site - Broughton

Client : Welsh Assembly Government

				TEDM			<u>ог</u> /	~ ^ / · ·	EO			יווס			(00	2)				6
				TERM	INAT	ION	OF	CALI	FOR	NIA	BEA	RINC	g RA		(CBF	र)				
Borehole / Trial Pit	Depth (m)	Sample	% Passing 20 mm Sieve									Des	scripti	on						
BH14	1.20	В3	97 %	Brown s	lightly	sandy (CLAY													
Moisture Co	ontent %																			
Bulk Densit	y Mg/m³	2.	09	1.20			1	1									1	1	1	· · · · ·
Dry Density	/ Mg/m³	1.	79]																
Soaked Tes	st	No		1.08																
				1 0.96																
Test on		🗆 то	OP	0.90																
Moisture Co		1	7	0.84																
Surcharge	weight kg																			
Penetration	mm	2.5	5.0	20.72													<u> </u>			
Force kN		0.31	0.56	e <u>1</u> 0.60												, p (<u>18</u>		
Corrected (BR %	2.3	2.8	C.72 (N) (KN) (C.60 (C.60 (C.72) (C.7												50				
Test on		О вот	том	<u></u> 80.48									₽ <u>₩</u> `	3 0 (
Moisture Co	ontent %	-	6	0.36																
Surcharge										₽⊔										
Penetration		2.5	5.0	0.24				Ύп'	╞└┘											
Force kN		0.34	0.53	0.12			ᅌᅳᄔ													
Corrected 0	CBR %	2.6	2.7	5.12																
				0.00 0		50 1	00 1	50 2	00 2	50 3	00 3	50 4	00 4	50 5	00 5	50 6	00 6	50 7	00 7	50 8.00
Test on		TOP	воттом			50 1.			JU 2.					ger (mr						
	BR %	2.8	2.7																	
Reported C	2.11 /0																			

Laboratory Test Report - 40274E/1

Job Number 40274E

Client : Welsh Assembly Government

: Warren Hall Site - Broughton

402741

Page

7 / 15

DETERMINATION OF MOISTURE CONTENT, DENSITY AND UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE (DEFINITIVE METHOD)

BH14 2.00	U5 Brown GR/	nm) 450	Max Deviator Stress (KPa)
Initial Specimen			126 -
Initial Specimer			
Initial Spec		ample (mm) 50	ě 84
Initial	Condition of Sample		
		Vertical	
Test Type	Orientation:	Single Stage	
Length of Specim	on (mm)	208	
Diameter of Spec		101.2	
Moisture Content		15	14 -
Bulk Density (Mg		2.22	$0 \frac{1}{0} 5 10 15 20 25$
Dry Density (Mg/r		1.93	Strain %
Membrane Thickr		0.32	
Membrane Type		latex	
Rate of Strain (%/	min)	1.44	
Measured Ce	ll Pressure (kPa)	40	
م Strain at Fail	ıre (%)	20.2	
Membrane Co	prrection (kPa)	1.2	
	viator Stress (kPa)	134	
Shear Stress	(kPa)	67	
Mode of Failu	ire (B/P/C)	Compound	

Laboratory Test Report - 40274E/1

Job Number 40274E

Client : Welsh Assembly Government

: Warren Hall Site - Broughton

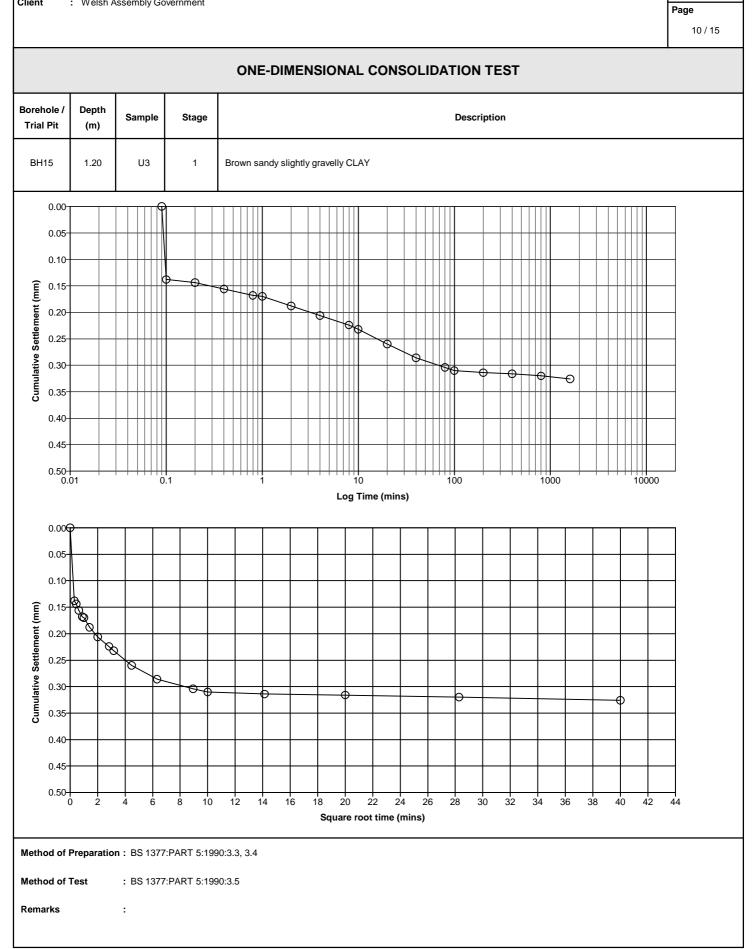
Page

8 / 15

DETERMINATION OF MOISTURE CONTENT, DENSITY AND UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE (DEFINITIVE METHOD)

ehole / ial Pit	Depth (m)	Sample			Descri	ption
3H17	9.00	U20	Brown sandy CLAY			
					- 288 - 256 - 224 - 201 - 261 - 261 - 261 - 261 - 261 - 262 - 263 - 265 - 265	
c.		Length	of Sample (mm)	450	S 224 -	
Initial Specimen	\square	Depth f	rom top of sample (mm)	50	192 -	
al Spe		Conditi	on of Sample: Undisturb	bed	5 ¹⁶⁰	
Initi		Orienta	tion: Vertica	d	128 -	
Test Ty	pe		Single St	age	D 96 -	
Length	of Specim	en (mm)	208.9		Xe 64	
Diamet	er of Speci	men (mm)	101.2			
Moistu	re Content	(%)	12		32 -	
Bulk Density (Mg/m³)			2.31		0 +	5 10 15 20 2
Dry Density (Mg/m³)			2.05			Strain %
Membr	ane Thickn	ess (mm)	0.31			
Membr	ane Type	latex				
Rate of	Strain (%/	min)	1.91	1.91		
Me	asured Cel	I Pressure ((kPa) 180			
<u>ع</u> Str	ain at Failu	ıre (%)	18.7			
Test Results	mbrane Co	orrection (kl	Pa) 1.1	1.1		
Co Co	rrected Dev	viator Stres	s (kPa) 312			
Sh	ear Stress	(kPa)	156	156		
Mo	de of Failu	re (B/P/C)	Brittle	•		

: Warren Hall Site - Broughton

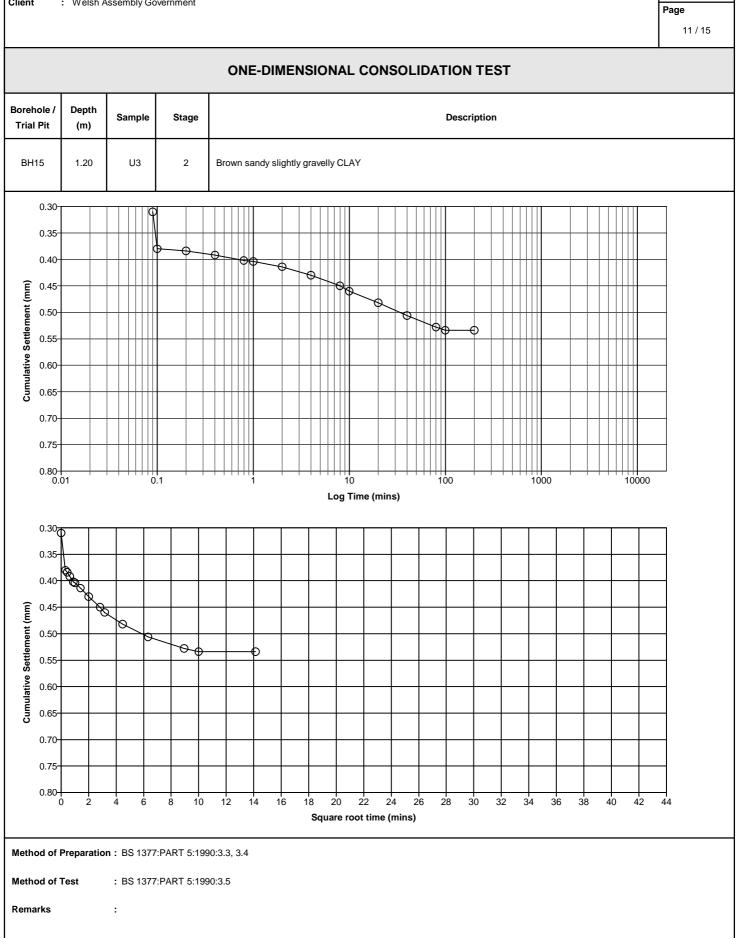

Client : Welsh Assembly Government

Page 9/15 **ONE-DIMENSIONAL CONSOLIDATION TEST** Borehole / Depth Sample Description Trial Pit (m) BH15 U3 1.20 Brown sandy slightly gravelly CLAY Length of Sample (mm) 450 Specimen Depth from top of sample (mm) 50 **Condition of Sample:** Undisturbed Initial Orientation: Vertical Q Diameter (mm) 75.00 2.65 0.34 Particle Density (Mg/m³) (Assumed) Swelling Pressure (kN/m²) 0.32 Lab Temp (°C) 19 0.30 Inital Final 0.28 **VOID RATIO** Height (mm) 19.00 17.86 0.26 Wet Weight (g) 181.41 181.51 Moisture Content (%) 15 13 0.24 Q Bulk Density (Mg/m³) 2.16 2.30 0.22 Dry Density (Mg/m³) 1.88 2.03 0.20 Void Ratio 0.410 0.305 Degree of Saturation (%) 97.60 116.25 0.18 0.16 10 100 PRESSURE kN/m² Pressure Μv Cv Void Pressure Μv Cv Void kN/m² m²/MN m²/year Ratio kN/m² m²/MN m²/year Ratio 0.70 0.358 25 6.1 0.324 50 0.49 5.0 0.219 150 0.38 8.1 250 0.17 6.4 0.164 0.11 0.236 25 6.6 Method of Preparation: BS 1377:PART 5:1990:3.3, 3.4 : BS 1377:PART 5:1990:3.5 Method of Test Remarks :

: Warren Hall Site - Broughton

Client : Welsh Assembly Government

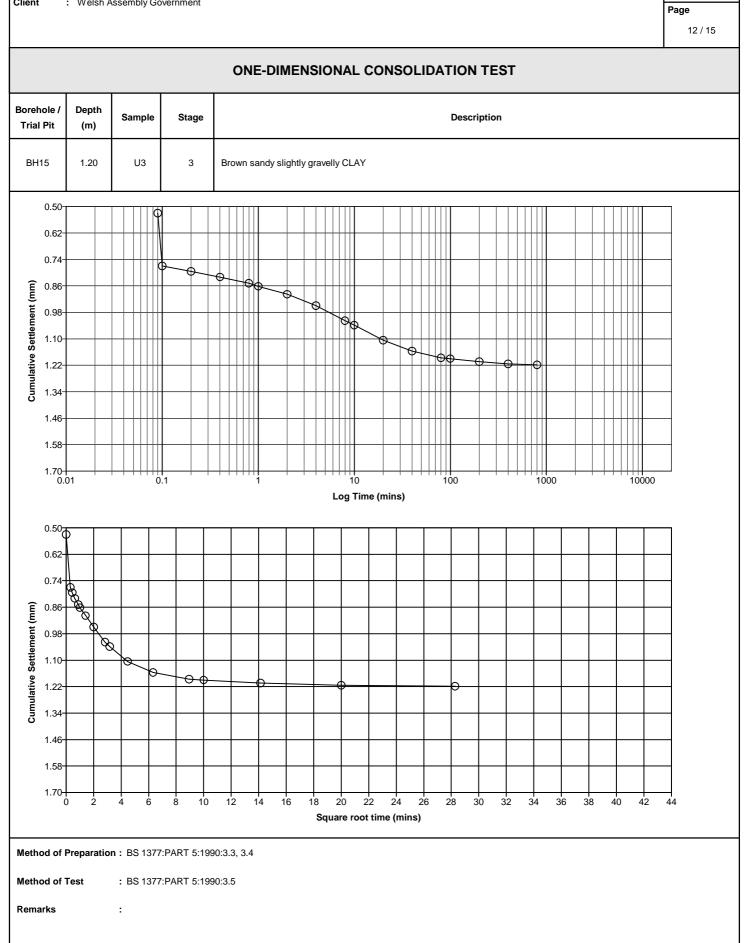
Laboratory Test Report - 40274E/1


Job Number

40274E

: Warren Hall Site - Broughton

Client : Welsh Assembly Government


Job Number

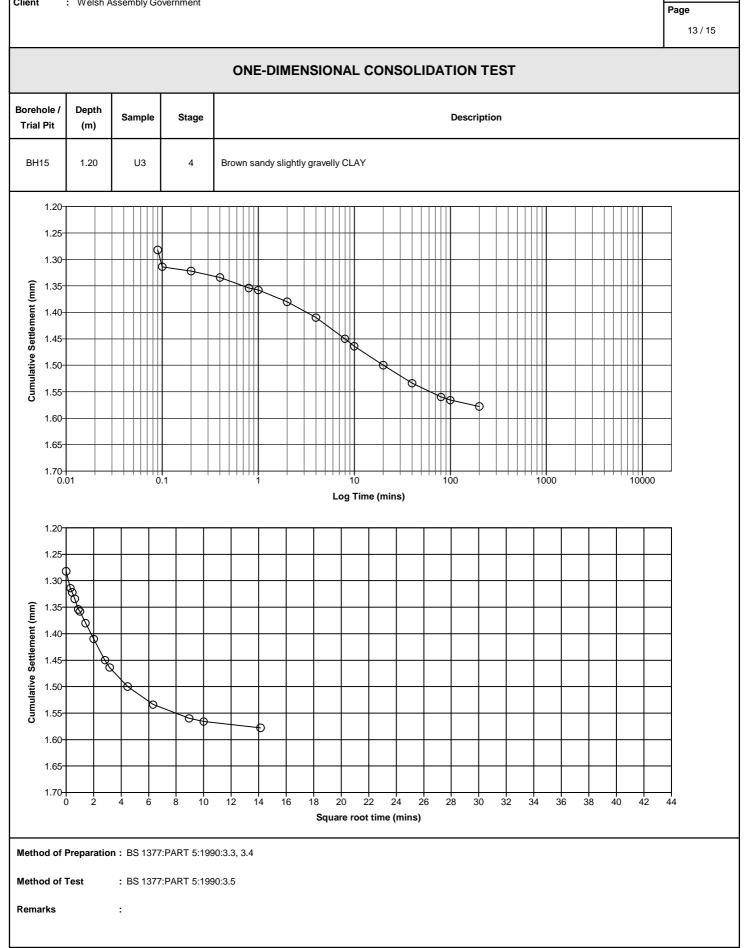
40274E

: Warren Hall Site - Broughton

Client : Welsh Assembly Government

Laboratory Test Report - 40274E/1

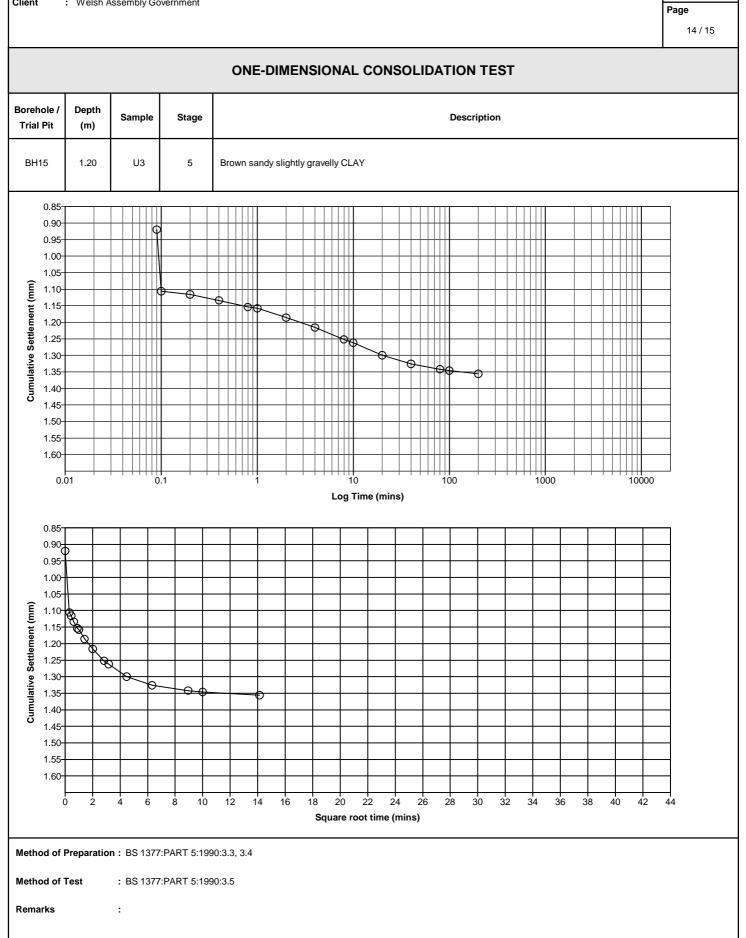
Job Number


40274E

Site

: Warren Hall Site - Broughton

Client : Welsh Assembly Government


Job Number

Site

: Warren Hall Site - Broughton

Client : Welsh Assembly Government

Job Number

40274E

Test Report :

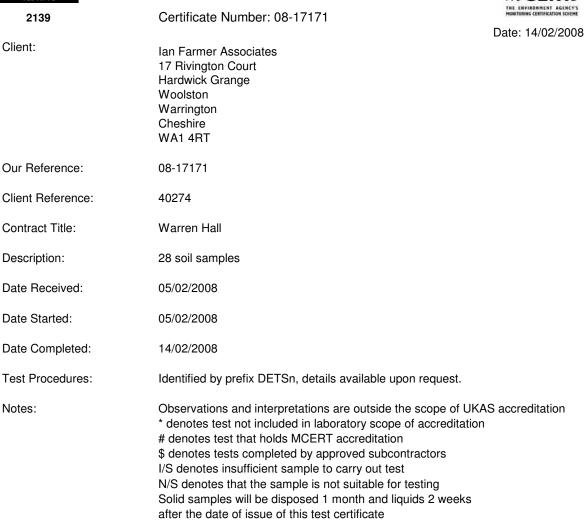
40274E/1

Site : Job Number : Originating Client : Warren Hall Site - Broughton 40274E Welsh Assembly Government

All opinions and interpretations contained within this report are outside of our Scope of Accreditation.

The following tests contained within this report are not UKAS Accredited. One - Dimensional Consolidation

Date of Issue :


19/2/08

APPENDIX 4

CHEMICAL TESTS

Certificate of Analysis

Approved By:

PUQ.

Authorised Signatories:

Rob Brown Business Manager

Page 1 of 26

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Our Ref:08-17171Client Ref:40274Contract Title:Warren Hall

Sample Details

Sample II	Depth	DETS Re	f Matrix Description	Date Sampled	Time Sampled	Preservation	Analysis Complete
WS01	0.50	116583	Loose brown orange grey clayey SAND (silty)	Not Provided	Not Provided	None	14/02/2008
WS02	0.50	116584	Firm brown orange CLAY	Not Provided	Not Provided	None	14/02/2008
WS02	1.00	116585	Soft brown slightly sandy CLAY	Not Provided	Not Provided	None	14/02/2008
WS03	0.70	116586	Firm dark brown / grey sandy gravelly CLAY	Not Provided	Not Provided	None	14/02/2008
WS04	0.30	116587	Firm brown orange grey slightly gravelly CLAY (made ground contains coal)	Not Provided	Not Provided	None	14/02/2008
WS04	1.30	116588	Firm brown grey CLAY	Not Provided	Not Provided	None	14/02/2008
WS05	0.50	116589	Soft light brown grey slightly gravelly CLAY	Not Provided	Not Provided	None	14/02/2008
WS05	1.50	116590	Firm light brown grey CLAY	Not Provided	Not Provided	None	14/02/2008
WS06	0.70	116591	Firm dark brown sandy gravelly CLAY	Not Provided	Not Provided	None	14/02/2008
WS06	1.50	116592	Firm brown red slightly gravelly CLAY (made ground contains coal)	Not Provided	Not Provided	None	14/02/2008
WS07	0.50	116593	Firm light brown red grey gravelly CLAY	Not Provided	Not Provided	None	14/02/2008
WS07	1.50	116594	Firm dark brown black grey sandy CLAY	Not Provided	Not Provided	None	14/02/2008
WS08	0.70	116595	Loose brown SAND (silty)	Not Provided	Not Provided	None	14/02/2008
WS09	0.50	116596	Firm dark brown red slightly sandy gravelly CLAY	Not Provided	Not Provided	None	14/02/2008
WS09	1.00	116597	Firm brown sandy gravelly CLAY	Not Provided	Not Provided	None	14/02/2008
WS10	1.50	116598	Firm brown grey slightly gravelly CLAY (made ground contains brick)	Not Provided	Not Provided	None	14/02/2008
WS10	2.70	116599	Firm brown orange sandy gravelly CLAy (made ground contains coal)	Not Provided	Not Provided	None	14/02/2008
WS11	0.50	116600	Firm dark brown grey sandy gravelly CLAY (occasional rootlets)	Not Provided	Not Provided	None	14/02/2008
WS11	1.50	116601	Firm brown grey gravelly sandy CLAY (silty)	Not Provided	Not Provided	None	14/02/2008
WS12	0.50	116602	Firm dark brown redish sandy gravelly CLAY	Not Provided	Not Provided	None	14/02/2008
WS12	1.00	116603	Soft brown grey slightly gravelly sandy CLAY	Not Provided	Not Provided	None	14/02/2008
WS13	0.50	116604	Stiff brown grey gravelly sandy CLAY	Not Provided	Not Provided	None	14/02/2008
WS15	0.50	116605	Soft brown grey sandy gravelly CLAY (occasional rootlets)	Not Provided	Not Provided	None	14/02/2008
WS15	2.00	116606	Firm dark brown sandy gravelly CLAY	Not Provided	Not Provided	None	14/02/2008
WS16	0.30	116607	Firm brown grey gravelly sandy CLAY	Not Provided	Not Provided	None	14/02/2008
WS17	1.00	116608	Very soft brown orange grey sandy CLAY	Not Provided	Not Provided	None	14/02/2008
WS17	1.30	116609	Stiff brown grey slighty gravelly sandy CLAY	Not Provided	Not Provided	None	14/02/2008
TP5	1.50	116610	Firm brown gravelly sandy CLAY	Not Provided	Not Provided	None	14/02/2008

Our Ref:08-17171Client Ref:40274Contract Title:Warren Hall

Sample Details

Sample ID Depti DETS her Math Descriptio	Sample ID	Depth	DETS Ref	Matrix Description
--	-----------	-------	----------	--------------------

Date Sampled

Time Sampled

Preservation Analysis Complete

Derwentside Environmental Testing Services Ltd

		Lab No.	116583	116584	116585	116586
		Sample Ref	WS01	WS02	WS02	WS03
		Depth	0.50	0.50	1.00	0.70
		Other Ref				
		Sample Type	D	J	D	D
Test	Units	DETSxx				
Arsenic	mg/kg	DETS 042#	6	9	8	4
Cadmium	mg/kg	DETS 042	0.4	0.7	0.8	0.5
Chromium	mg/kg	DETS 042	14	25	24	15
Copper	mg/kg	DETS 042	17	11	19	10
Lead	mg/kg	DETS 042	63	23	23	19
Mercury	mg/kg	DETS 081*	< 0.3	< 0.3	< 0.3	< 0.3
Nickel	mg/kg	DETS 042	12	18	24	14
Selenium	mg/kg	DETS 042	< 0.3	0.3	< 0.3	< 0.3
Zinc	mg/kg	DETS 042#	27	45	47	32
Boron (water soluble)	mg/kg	DETS 020#	0.3	0.5	0.2	1.6
Cyanide free	mg/kg	DETS 067#	< 0.1	< 0.1	< 0.1	< 0.1
рН		DETS 008#	8.2	8.0	8.3	8.2
Aliphatic C5-C6	mg/kg	DETS 072*				
Aliphatic C6-C8	mg/kg	DETS 072*				
Aliphatic C8-C10	mg/kg	DETS 072*				
Aliphatic C10-C12	mg/kg	DETS 072*				
Aliphatic C12-C16	mg/kg	DETS 072*				
Aliphatic C16-C21	mg/kg	DETS 072*				
Aliphatic C21-C35	mg/kg	DETS 072*				
Aromatic C5-C7	mg/kg	DETS 072*				
Aromatic C7-C8	mg/kg	DETS 072*				
Aromatic C8-C10	mg/kg	DETS 072*				
Aromatic C10-C12	mg/kg	DETS 072*				
Aromatic C12-C16	mg/kg	DETS 072*				
Aromatic C16-C21	mg/kg	DETS 072*				
Aromatic C21-C35	mg/kg	DETS 072*				
Aliphatic C5-C35	mg/kg	DETS 072*				
Aromatic C5-C35	mg/kg	DETS 072*				
TPH Ali/Aro	mg/kg	DETS 072*				

		Lab No.	116583	116584	116585	116586
		Sample Ref	WS01	WS02	WS02	WS03
		Depth	0.50	0.50	1.00	0.70
		Other Ref	5			5
Test	Unito	Sample Type DETSxx	D	J	D	D
Test	Units		0.1	0.1	0.1	0.1
Acenaphthene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Acenapthylene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Anthracene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)anthracene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(b)fluoranthene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(g,h,i)perylene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Chrysene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Dibenzo(a,h)anthracene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Fluoranthene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Napthalene	mg/kg	DETS 050	0.3	0.3	0.3	0.3
Phenanthrene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Pyrene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
РАН	mg/kg	DETS 050	< 5.0	< 5.0	< 5.0	< 5.0
Benzene	mg/kg	DETS 062#				
Ethylbenzene	mg/kg	DETS 062#				
Toluene	mg/kg	DETS 062#				
Xylene	mg/kg	DETS 062#				
Phenol - Monohydric	mg/kg	DETS 067#				
PCB	mg/kg	DETS 052*				
2,4,4'-Trichlorobiphenyl PCB 28	mg/kg	DETS 052*				
2,2',5,5'-Tetrachlorobiphenyl PCB 52	mg/kg	DETS 052*				
2,2',4,5,5'-Pentachlorobiphenyl PCB 101	mg/kg	DETS 052*				
2,3',4,4',5-Pentachlorobiphenyl PCB 118	mg/kg	DETS 052*				
2,2',4,4',5,5'-Hexachlorobiphenyl PCB 153	mg/kg	DETS 052*				
2,2',3,4,4',5'-Hexachlorobiphenyl PCB 138	mg/kg	DETS 052*				
2,2',3,4,4',5,5'-Heptachlorobiphenyl PCB 180	mg/kg	DETS 052*				
Total VOC's	mg/kg	DETS 068*				
1,2-dichloropropane	mg/kg	DETS 068*				
Dibromomethane	mg/kg	DETS 068*				
Bromodichloromethane	mg/kg	DETS 068*				
cis-1,3-dichloropropene	mg/kg	DETS 068*				
Toluene	mg/kg	DETS 068*				
trans-1,3-dichloropropene	mg/kg	DETS 068*				
1,1,2-trichloroethane	mg/kg	DETS 068*				
Tetrachloroethylene	mg/kg	DETS 068*				
1,3-dichloropropane	mg/kg	DETS 068*				
Dibromochloromethane	mg/kg	DETS 068*				
1,2-dibromoethane	mg/kg	DETS 068*				
Chlorobenzene	mg/kg	DETS 068*				
Ethylbenzene+1,1,1,2-tetrachloroethane	mg/kg	DETS 068*				
m+p-Xylene	mg/kg	DETS 068*				

Depth 0.50 0.50 1.00 0.70 Other Ref Sample Type D J D D Test Units DETS 068* Sample Type D J D D Test Units DETS 068* State 1000000000000000000000000000000000000			Lab No.	116583	116584	116585	116586
Other Ref Sample Type D J D <thd< th=""> <thd< th=""></thd<></thd<>			Sample Ref	WS01	WS02	WS02	WS03
TestUnitsDETSxDJDDo-Vjenemg/kgDETS 068*Styrenemg/kgDETS 068*Bromoformmg/kgDETS 068*Bromotormmg/kgDETS 068*Bromotornemg/kgDETS 068*Bromotornemg/kgDETS 068*I.2,3-trichloropropanemg/kgDETS 068*1.3,5-trimethyberzenemg/kgDETS 068*2-chlorotoluenemg/kgDETS 068*2-chlorotoluenemg/kgDETS 068*1.3,5-trimethyberzenemg/kgDETS 068*2-thorotoluenemg/kgDETS 068*1.3-dichlorobenzenemg/kgDETS 068*1.3-dichlorobenzenemg/kgDETS 068*1.3-dichlorobenzenemg/kgDETS 068*1.3-dichlorobenzenemg/kgDETS 068*1.3-dichlorobenzenemg/kgDETS 068*1.3-dichlorobenzenemg/kgDETS 068*1.3-dichlorobenzenemg/kgDETS 068*1.2-dichlorobenzenemg/kgDETS 068*1.2-dic			Depth	0.50	0.50	1.00	0.70
TestUnitsDETS xxo.Xylenemg/kgDETS 068'Styrenemg/kgDETS 068'Bormoformmg/kgDETS 068'Isopropylbenzenemg/kgDETS 068'Bromobenzenemg/kgDETS 068'Bromobenzenemg/kgDETS 068'1.2.3 trichloropropanemg/kgDETS 068'2.4 trichloropropanemg/kgDETS 068'2-chlorotoluenemg/kgDETS 068'2-chlorotoluenemg/kgDETS 068'4-chlorotoluenemg/kgDETS 068'1.2.4 trichloropropanemg/kgDETS 068'2.4.1 chlorobenzenemg/kgDETS 068'1.2.4-trinethylbenzenemg/kgDETS 068'1.2.4-trichlorobenzenemg/kgDETS 068'1.3-dichlorobenzenemg/kgDETS 068'1.4-dichlorobenzenemg/kgDETS 068'1.2-dichlorobenzenemg/kgDETS 068'1.2-dichlorobenzene			Other Ref				
o-Xylenemg/kgDETS 068*Styrenemg/kgDETS 068*Bromotormmg/kgDETS 068*Bromoterzenemg/kgDETS 068*Bromotenzenemg/kgDETS 068*Bromotenzenemg/kgDETS 068*Propolybenzenemg/kgDETS 068*2-chiorotoluenemg/kgDETS 068*1.3.5-trimethylbenzenemg/kgDETS 068*4-chiorotoluenemg/kgDETS 068*1.3.5-trimethylbenzenemg/kgDETS 068*1.3.4-trimethylbenzenemg/kgDETS 068*1.2.4-trimethylbenzenemg/kgDETS 068*1.2.4-trimethylbenzenemg/kgDETS 068*1.3-dichlorobenzene+p-isopropyltoluenemg/kgDETS 068*1.3-dichlorobenzenemg/kgDETS 068*1.2-dichlorobenzenemg/kgDETS 068*1.1 Dichlorobenzenemg/kgDETS 068*1.2-dichloroethylenemg/kgDETS 068*1.1 Dichloropthylenemg/kgDETS 068* <th></th> <th></th> <th>Sample Type</th> <th>D</th> <th>J</th> <th>D</th> <th>D</th>			Sample Type	D	J	D	D
Syrene mg/kg DETS 068* Bromoform mg/kg DETS 068* Isopropybenzene mg/kg DETS 068* 1.2.3-trichloropropane mg/kg DETS 068* 1.2.3-trichloropropane mg/kg DETS 068* 1.2.3-trichloropropane mg/kg DETS 068* 2-chlorotoluene mg/kg DETS 068* 3.5-trimethylbenzene mg/kg DETS 068* 4-chlorotoluene mg/kg DETS 068* 4-chlorotoluene mg/kg DETS 068* 1.2.4-trimethylbenzene mg/kg DETS 068* 1.2.4-trimethylbenzene mg/kg DETS 068* 1.2.4-trimethylbenzene mg/kg DETS 068* 1.3-dichlorobenzene mg/kg DETS 068* 1.3-dichlorobenzene mg/kg DETS 068* 1.2-dichlorobenzene	Test	Units	DETSxx				
Brometormmg/kgDETS 068*Isopropylbenzenemg/kgDETS 068*Bromobenzenemg/kgDETS 068*1,2.3-trichloropropanemg/kgDETS 068*-propylbenzenemg/kgDETS 068*2-chlorotoluenemg/kgDETS 068*2-chlorotoluenemg/kgDETS 068*2-chlorotoluenemg/kgDETS 068*2-chlorotoluenemg/kgDETS 068*2-chlorotoluenemg/kgDETS 068*2-chlorotoluenemg/kgDETS 068*1.3.5-trimethylbenzenemg/kgDETS 068*1.2.4-trimethylbenzenemg/kgDETS 068*1.2.4-trimethylbenzenemg/kgDETS 068*1.2.4-trimethylbenzenemg/kgDETS 068*1.2.4-trimethylbenzenemg/kgDETS 068*1.4-dichlorobenzenemg/kgDETS 068*1.2.4-trichlorobenzenemg/kgDETS 068*1.1.Dichloroethylenemg/kgDETS 068*1.1.Dichloroethylene<	o-Xylene	mg/kg	DETS 068*				
Isopropylbenzenemg/kgDETS 068*Bromobenzenemg/kgDETS 068*1,2,3-trichloropropanemg/kgDETS 068*2,2-thiorobluenemg/kgDETS 068*2,5-trimethylbenzenemg/kgDETS 068*1,3,5-trimethylbenzenemg/kgDETS 068*4-chlorobluenemg/kgDETS 068*1,2,4-trimethylbenzenemg/kgDETS 068*1,2,4-trimethylbenzenemg/kgDETS 068*1,2,4-trimethylbenzenemg/kgDETS 068*1,2,4-trimethylbenzenemg/kgDETS 068*1,2,4-trimethylbenzenemg/kgDETS 068*1,2,4-trinethylbenzenemg/kgDETS 068*1,2,4-trinethylbenzenemg/kgDETS 068*1,2,4-trinethylbenzenemg/kgDETS 068*1,2,4-trinethylbenzenemg/kgDETS 068*1,2,4-trinethopropapanemg/kgDETS 068*1,2,4-trichlorobenzenemg/kgDETS 068*1,2,4-trichlorobenzenemg/kgDETS 068*1,2,4-trichlorobenzenemg/kgDETS 068*1,2,4-trichlorobenzenemg/kgDETS 068*Naphthalenemg/kgDETS 068*1,2,4-trichlorobenzenemg/kgDETS 068*1,2,4-trichlorobenzenemg/kgDETS 068*1,1,2-trichlorobenzenemg/kgDETS 068*1,1,2-trichlorobenzenemg/kgDETS 068*1,1,2-trichlorobenzenemg/kgDETS 068*1,1,2-trichlorobenzenemg/kgDETS 068*1,1,2-trichlorobenzenemg/kgDETS 068* </td <td>Styrene</td> <td>mg/kg</td> <td>DETS 068*</td> <td></td> <td></td> <td></td> <td></td>	Styrene	mg/kg	DETS 068*				
Bromobenzene mg/kg DETS 068* 1,2,3-trichloropropane mg/kg DETS 068* n-propylbenzene mg/kg DETS 068* 2-chlorotoluene mg/kg DETS 068* 3,5-trimethylbenzene mg/kg DETS 068* 4-chlorotoluene mg/kg DETS 068* 4-chlorotoluene mg/kg DETS 068* 4-chlorotoluene mg/kg DETS 068* 1,2,4-trimethylbenzene mg/kg DETS 068* 1,2,4-trimethylbenzene mg/kg DETS 068* 1,2,4-trimethylbenzene mg/kg DETS 068* 1,3-dichlorobenzene+p-isopropyltoluene mg/kg DETS 068* 1,2-dichlorobenzene mg/kg DETS 068* 1,2-	Bromoform	mg/kg	DETS 068*				
1.2.3-trichloropropane mg/kg DETS 068* n-propylbenzene mg/kg DETS 068* 2-chlorotoluene mg/kg DETS 068* 1.3.5-trimethylbenzene mg/kg DETS 068* 4-chlorotoluene mg/kg DETS 068* 1.3.5-trimethylbenzene mg/kg DETS 068* 1.2.4-trimethylbenzene mg/kg DETS 068* 1.2.4-trimethylbenzene mg/kg DETS 068* 1.3.dichlorobenzene*/p-isopropyltoluene mg/kg DETS 068* 1.4-dichlorobenzene mg/kg DETS 068* 1.4-dichlorobenzene mg/kg DETS 068* 1.4-dichlorobenzene mg/kg DETS 068* 1.2-dichlorobenzene mg/kg DETS 068* <tr< td=""><td>Isopropylbenzene</td><td>mg/kg</td><td>DETS 068*</td><td></td><td></td><td></td><td></td></tr<>	Isopropylbenzene	mg/kg	DETS 068*				
n-propylbenzenemg/kgDETS 068*2-chlorotoluenemg/kgDETS 068*1,3.5-trimethylbenzenemg/kgDETS 068*4-chlorotoluenemg/kgDETS 068*1.2.4-trimethylbenzenemg/kgDETS 068*1.2.4-trimethylbenzenemg/kgDETS 068*1.2.4-trimethylbenzenemg/kgDETS 068*1.3-dichlorobenzene+p-isopropyltoluenemg/kgDETS 068*1.4-dichlorobenzenemg/kgDETS 068*1.4-dichlorobenzenemg/kgDETS 068*1.2-dichlorobenzenemg/kgDETS 068*1.2-dichlorobenzenemg/kgDETS 068*1.2-dichlorobenzenemg/kgDETS 068*1.2-dichlorobenzenemg/kgDETS 068*1.2-dichlorobenzenemg/kgDETS 068*1.2-dichlorobenzenemg/kgDETS 068*1.2-dichlorobenzenemg/kgDETS 068*1.2.4-trichlorobenzenemg/kgDETS 068*1.2.3-trichlorobenzenemg/kgDETS 068*1.2.3-trichlorobenzenemg/kgDETS 068*1.2.3-trichlorobenzenemg/kgDETS 068*1.1.1-tichloroethylenemg/kgDETS 068*1.2-dichloroethanemg/kgDETS 068*1.1.1-tichloroethanemg/kgDETS 068*1.1.1-tichloroethanemg/kgDETS 068*1.1.1-tichloroethanemg/kgDETS 068*1.1.1-tichloroethanemg/kgDETS 068*1.1.1-tichloroethanemg/kgDETS 068*1.1.1-tichloroethanemg/kgDETS 068* <td>Bromobenzene</td> <td>mg/kg</td> <td>DETS 068*</td> <td></td> <td></td> <td></td> <td></td>	Bromobenzene	mg/kg	DETS 068*				
2-chlorotoluenemg/kgDETS 068*1,3,5-trimethylbenzenemg/kgDETS 068*4-chlorotoluenemg/kgDETS 068*Tert-butylbenzenemg/kgDETS 068*1,2,4-trimethylbenzenemg/kgDETS 068*sec-butylbenzenemg/kgDETS 068*1,3-dichlorobenzene+p-isopropyltoluenemg/kgDETS 068*1,3-dichlorobenzenemg/kgDETS 068*1,3-dichlorobenzenemg/kgDETS 068*1,2-dichlorobenzenemg/kgDETS 068*1,2-dichlorobenzenemg/kgDETS 068*1,2-dichlorobenzenemg/kgDETS 068*1,2-dichlorobenzenemg/kgDETS 068*1,2-dichlorobenzenemg/kgDETS 068*1,2-dichlorobenzenemg/kgDETS 068*1,2-dichlorobenzenemg/kgDETS 068*1,2-dichlorobenzenemg/kgDETS 068*1,2,3-trichlorobenzenemg/kgDETS 068*1,2,3-trichlorobenzenemg/kgDETS 068*Naphthalenemg/kgDETS 068*Naphthalenemg/kgDETS 068*1,1 Dichloroethylenemg/kgDETS 068*1,1 Dichloroethylenemg/kgDETS 068*1,1-trichloroethanemg/kgDETS 068*Carbon tetrachloride + 1,1-dichloropropenemg/kgDETS 068*1,1-trichloroethanemg/kgDETS 068*Chloroethanemg/kgDETS 068*Chloroformmg/kgDETS 068*Chloroformmg/kgDETS 068*Chloroformmg/kg <td>1,2,3-trichloropropane</td> <td>mg/kg</td> <td>DETS 068*</td> <td></td> <td></td> <td></td> <td></td>	1,2,3-trichloropropane	mg/kg	DETS 068*				
1,3,5 trimethylbenzene mg/kg DETS 068* 4-chlorotoluene mg/kg DETS 068* Tert-butylbenzene mg/kg DETS 068* sec-butylbenzene mg/kg DETS 068* sec-butylbenzene mg/kg DETS 068* 1,2-dt-trimethylbenzene-p-isopropyltoluene mg/kg DETS 068* 1,4-dichlorobenzene-p-isopropyltoluene mg/kg DETS 068* 1,4-dichlorobenzene mg/kg DETS 068* 1,2-dichlorobenzene mg/kg DETS 068* <td>n-propylbenzene</td> <td>mg/kg</td> <td>DETS 068*</td> <td></td> <td></td> <td></td> <td></td>	n-propylbenzene	mg/kg	DETS 068*				
4-chlorotoluenemg/kgDETS 068*Tert-butylbenzenemg/kgDETS 068*1,2,4-trimethylbenzenemg/kgDETS 068*sec-butylbenzenemg/kgDETS 068*1,3-dichlorobenzene+p-isopropyltoluenemg/kgDETS 068*1,4-dichlorobenzenemg/kgDETS 068*1,4-dichlorobenzenemg/kgDETS 068*1,2-dichlorobenzenemg/kgDETS 068*1,2-dichlorobenzenemg/kgDETS 068*1,2-dichlorobenzenemg/kgDETS 068*1,2-dichlorobenzenemg/kgDETS 068*1,2-dichlorobenzenemg/kgDETS 068*1,2-dichlorobenzenemg/kgDETS 068*1,2,4-trichlorobenzenemg/kgDETS 068*1,2,3-trichlorobenzenemg/kgDETS 068*1,2,3-trichlorobenzenemg/kgDETS 068*1,2,3-trichlorobenzenemg/kgDETS 068*1,2,3-trichlorobenzenemg/kgDETS 068*1,1 Dichloroethylenemg/kgDETS 068*1,2-dichloroethanemg/kgDETS 068*1,1 Dichloroethanemg/kgDETS 068*2-dichloroethanemg/kgDETS 068*Chloroformmg/kgDETS 068*Chloroformmg/kgDETS 068*Chloroformmg/kgDETS 068*Chloroformmg/kgDETS 068*Chloroformmg/kgDETS 068*Chloroformmg/kgDETS 068*Chloroformmg/kgDETS 068*Chloroformmg/kgDETS 068*Chlorofo	2-chlorotoluene	mg/kg	DETS 068*				
Tert-butylbenzenemg/kgDETS 068*1,2,4-trimethylbenzenemg/kgDETS 068*sec-butylbenzenemg/kgDETS 068*1,3-dichlorobenzene+p-isopropyltoluenemg/kgDETS 068*1,4-dichlorobenzene+p-isopropyltoluenemg/kgDETS 068*n-butylbenzenemg/kgDETS 068*1,2-dichlorobenzenemg/kgDETS 068*1,2-dichlorobenzenemg/kgDETS 068*1,2-dichlorobenzenemg/kgDETS 068*1,2-dichlorobenzenemg/kgDETS 068*1,2-dichlorobenzenemg/kgDETS 068*1,2,4-trichlorobenzenemg/kgDETS 068*1,2,3-trichlorobenzenemg/kgDETS 068*Naphtalenemg/kgDETS 068*1,2,3-trichlorobenzenemg/kgDETS 068*1,1,1-trichlorobenzenemg/kgDETS 068*1,2,3-trichlorobenzenemg/kgDETS 068*1,1,1-trichlorobenzenemg/kgDETS 068*1,1,1-trichlorobenzenemg/kgDETS 068*1,2,3-trichlorobenzenemg/kgDETS 068*1,1,1-trichlorobenzenemg/kgDETS 068*1,1,1-trichlorobenzenemg/kgDETS 068*1,1,1-trichlorobenzenemg/kgDETS 068*1,1,1-trichlorobenzenemg/kgDETS 068*2,2-dichlorooptane+1,2-dichlorooptynememg/kgDETS 068*2,2-dichlorooptane+1,2-dichloroethylenemg/kgDETS 068*1,1-dichloroptynememg/kgDETS 068*2,2-dichlorooptane+1,2-dichloroethylenemg/kgDETS 06	1,3,5-trimethylbenzene	mg/kg	DETS 068*				
1,2,4-trimethylbenzenemg/kgDETS 068*sec-butylbenzenemg/kgDETS 068*1,3-dichlorobenzene+p-isopropyltoluenemg/kgDETS 068*1,4-dichlorobenzenemg/kgDETS 068*n-butylbenzenemg/kgDETS 068*1,2-dichlorobenzenemg/kgDETS 068*1,2-dichlorobenzenemg/kgDETS 068*1,2-dichlorobenzenemg/kgDETS 068*1,2-dichlorobenzenemg/kgDETS 068*1,2-dichlorobenzenemg/kgDETS 068*1,2,4-trichlorobenzenemg/kgDETS 068*Naphthalenemg/kgDETS 068*1,2,3-trichlorobenzenemg/kgDETS 068*1,2,3-trichlorobenzenemg/kgDETS 068*1,2,3-trichlorobenzenemg/kgDETS 068*1,1 Dichloroethylenemg/kgDETS 068*1,2-dichloroethylenemg/kgDETS 068*1,2-dichloroethylenemg/kgDETS 068*1,2-dichloroethanemg/kgDETS 068*1,1,1-trichloroethanemg/kgDETS 068*Carbon tetrachloride + 1,1-dichloropropenemg/kgDETS 068*Chloroformmg/kgDETS 068*Bromochloromethanemg/kgDETS 068*Bromochloromethanemg/kgDETS 068*2,2-dichloropane+1,2-dichloroethylenemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068	4-chlorotoluene	mg/kg	DETS 068*				
sec-butylbenzenemg/kgDETS 068*1,3-dichlorobenzene+p-isopropyltoluenemg/kgDETS 068*1,4-dichlorobenzenemg/kgDETS 068*n-butylbenzenemg/kgDETS 068*1,2-dichlorobenzenemg/kgDETS 068*1,2-dichlorobenzenemg/kgDETS 068*1,2-dichlorobenzenemg/kgDETS 068*1,2-dichlorobenzenemg/kgDETS 068*1,2-dirichlorobenzenemg/kgDETS 068*1,2-dirichlorobenzenemg/kgDETS 068*Naphthalenemg/kgDETS 068*1,2,3-trichlorobenzenemg/kgDETS 068*1,2,3-trichlorobenzenemg/kgDETS 068*1,1 Dichloroethylenemg/kgDETS 068*1,2-dichloroethylenemg/kgDETS 068*1,1 Dichloroethylenemg/kgDETS 068*1,1,1-trichloroethanemg/kgDETS 068*Carbon tetrachloride + 1,1-dichloropropenemg/kgDETS 068*1,1,1-trichloroethanemg/kgDETS 068*Chloroformmg/kgDETS 068*Bromochloromethanemg/kgDETS 068*Bromochloromethanemg/kgDETS 068*Bromochloromethanemg/kgDETS 068*2,2-dichloroethylenemg/kgDETS 068*1,1-dichloroethylenemg/kgDETS 068*Bromochloromethanemg/kgDETS 068*1,1-dichloroethylenemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068* <t< td=""><td>Tert-butylbenzene</td><td>mg/kg</td><td>DETS 068*</td><td></td><td></td><td></td><td></td></t<>	Tert-butylbenzene	mg/kg	DETS 068*				
1.3-dichlorobenzene+p-isopropyltoluenemg/kgDETS 068*1.4-dichlorobenzenemg/kgDETS 068*n-butylbenzenemg/kgDETS 068*1.2-dichlorobenzenemg/kgDETS 068*1.2-dichlorobenzenemg/kgDETS 068*1.2-dibromo-3-chloropropanemg/kgDETS 068*1.2-dichlorobenzenemg/kgDETS 068*1.2.4-trichlorobenzenemg/kgDETS 068*Hexachlorobutadienemg/kgDETS 068*Naphthalenemg/kgDETS 068*1.2.3-trichlorobenzenemg/kgDETS 068*Trichloroethylenemg/kgDETS 068*Methylene Chloridemg/kgDETS 068*1.1 Dichloroethylenemg/kgDETS 068*1.2-dichloroethanemg/kgDETS 068*1.1.1-trichloroethanemg/kgDETS 068*1.1.1-trichloroethanemg/kgDETS 068*1.1.1-trichloroethanemg/kgDETS 068*1.1.1-trichloroethanemg/kgDETS 068*Bromochloromethanemg/kgDETS 068*2.2-dichloroethylenemg/kgDETS 068*1.1.1-trichloroethanemg/kgDETS 068*2.2-dichloroothanemg/kgDETS 068*2.2-dichloroothanemg/kgDETS 068*1.1-dichloroothanemg/kgDETS 068*1.1-dichloroothanemg/kgDETS 068*1.1-dichloroothanemg/kgDETS 068*1.1-dichloroothanemg/kgDETS 068*1.1-dichloroothanemg/kgDETS 068*1.1-dichl	1,2,4-trimethylbenzene	mg/kg	DETS 068*				
1.4-dichlorobenzenemg/kgDETS 068*n-butylbenzenemg/kgDETS 068*1.2-dichlorobenzenemg/kgDETS 068*1.2-dibromo-3-chloropropanemg/kgDETS 068*1.2.4-trichlorobenzenemg/kgDETS 068*Hexachlorobutadienemg/kgDETS 068*Naphthalenemg/kgDETS 068*1.2.3-trichlorobenzenemg/kgDETS 068*1.2.3-trichlorobenzenemg/kgDETS 068*1.2.3-trichlorobenzenemg/kgDETS 068*1.2.3-trichlorobenzenemg/kgDETS 068*1.1.1 Dichloroethylenemg/kgDETS 068*1.1.2-cichloroethanemg/kgDETS 068*1.2-dichloroethanemg/kgDETS 068*1.1.1-trichloroethanemg/kgDETS 068*1.1.1-trichloroethanemg/kgDETS 068*1.1.1-trichloroethanemg/kgDETS 068*1.1.1-trichloroethanemg/kgDETS 068*1.1.1-trichloroethanemg/kgDETS 068*1.1.1-trichloroethanemg/kgDETS 068*1.1.1-trichloroethanemg/kgDETS 068*2.2-dichlororopane+1,2-dichloroethylenemg/kgDETS 068*1.1-dichloroethanemg/kgDETS 068*2.2-dichlororopane+1,2-dichloroethylenemg/kgDETS 068*1.1-dichloroethanemg/kgDETS 068*1.1-dichloroethanemg/kgDETS 068*	sec-butylbenzene	mg/kg	DETS 068*				
n-butylbenzenemg/kgDETS 068*1,2-dichlorobenzenemg/kgDETS 068*1,2-dibromo-3-chloropropanemg/kgDETS 068*1,2,4-trichlorobenzenemg/kgDETS 068*Hexachlorobutadienemg/kgDETS 068*Naphthalenemg/kgDETS 068*1,2,3-trichlorobenzenemg/kgDETS 068*1,2,3-trichlorobenzenemg/kgDETS 068*1,2,3-trichlorobenzenemg/kgDETS 068*1,1,1-tichloroethylenemg/kgDETS 068*1,1 Dichloroethylenemg/kgDETS 068*1,2-dichloroethylenemg/kgDETS 068*1,2-dichloroethylenemg/kgDETS 068*1,1-trichloroethanemg/kgDETS 068*1,1,1-trichloroethanemg/kgDETS 068*1,1,1-trichloroethanemg/kgDETS 068*1,1,1-trichloroethanemg/kgDETS 068*1,1,1-trichloroethanemg/kgDETS 068*1,1,1-trichloroethanemg/kgDETS 068*1,1,1-trichloroethanemg/kgDETS 068*1,1,1-trichloroethanemg/kgDETS 068*2,2-dichlororopane+1,2-dichloroethylenemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068* </td <td>1,3-dichlorobenzene+p-isopropyltoluene</td> <td>mg/kg</td> <td>DETS 068*</td> <td></td> <td></td> <td></td> <td></td>	1,3-dichlorobenzene+p-isopropyltoluene	mg/kg	DETS 068*				
1.2-dichlorobenzenemg/kgDETS 068*1.2-dibromo-3-chloropropanemg/kgDETS 068*1.2,4-trichlorobenzenemg/kgDETS 068*Hexachlorobutadienemg/kgDETS 068*Naphthalenemg/kgDETS 068*1,2,3-trichlorobenzenemg/kgDETS 068*1,2,3-trichlorobenzenemg/kgDETS 068*Trichloroethylenemg/kgDETS 068*Methylene Chloridemg/kgDETS 068*1,1 Dichloroethylenemg/kgDETS 068*1,2-dichloroethanemg/kgDETS 068*Benzenemg/kgDETS 068*1,1.1-trichloroethanemg/kgDETS 068*1,1.1-trichloroethanemg/kgDETS 068*Carbon tetrachloride + 1,1-dichloropropenemg/kgDETS 068*1,1.1-trichloroethanemg/kgDETS 068*Bromochloromethanemg/kgDETS 068*Bromochloronethanemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*2,2-dichlororopane+1,2-dichloroethylenemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*	1,4-dichlorobenzene	mg/kg	DETS 068*				
1.2.dibromo-3-chloropropanemg/kgDETS 068*1.2.4-trichlorobenzenemg/kgDETS 068*Hexachlorobutadienemg/kgDETS 068*Naphthalenemg/kgDETS 068*1.2.3-trichlorobenzenemg/kgDETS 068*Trichloroethylenemg/kgDETS 068*Methylene Chloridemg/kgDETS 068*1.1 Dichloroethylenemg/kgDETS 068*1.2-dichloroethylenemg/kgDETS 068*1.2-dichloroethylenemg/kgDETS 068*2.2-dichloroethanemg/kgDETS 068*1.1.1-trichloroethanemg/kgDETS 068*1.1.1-trichloroethanemg/kgDETS 068*Chloroformmg/kgDETS 068*Pormochloromethanemg/kgDETS 068*Pormochloronethanemg/kgDETS 068*2.2-dichlororopane+1,2-dichloroethylenemg/kgDETS 068*1.1-dichloropthanemg/kgDETS 068*1.1-dichloropthanemg/kgDETS 068*1.1-dichloropthanemg/kgDETS 068*2.2-dichlorophane+1,2-dichloroethylenemg/kgDETS 068*1.1-dichlorophane+1,2-dichloroethylenemg/kgDETS 068*1.1-dichloroethanemg/kgDETS 068*	n-butylbenzene	mg/kg	DETS 068*				
1,2,4-trichlorobenzenemg/kgDETS 068*Hexachlorobutadienemg/kgDETS 068*Naphthalenemg/kgDETS 068*1,2,3-trichlorobenzenemg/kgDETS 068*Trichloroethylenemg/kgDETS 068*Methylene Chloridemg/kgDETS 068*1,1 Dichloroethylenemg/kgDETS 068*1,2-dichloroethanemg/kgDETS 068*Benzenemg/kgDETS 068*Carbon tetrachloride + 1,1-dichloropropenemg/kgDETS 068*1,1,1-trichloroethanemg/kgDETS 068*Chloroformmg/kgDETS 068*Bromochloromethanemg/kgDETS 068*Chloroformmg/kgDETS 068*I,1,1-trichloroethanemg/kgDETS 068*I,1,1-trichloroethanemg/kgDETS 068*I,1,1-trichloroethanemg/kgDETS 068*I,1,1-trichloroethanemg/kgDETS 068*I,1-dichloropthanemg/kgDETS 068*I,1-dichloroethanemg/kgDETS 068*I,1-dichloroethanemg/kgDETS 068*I,1-dichloroethanemg/kgDETS 068*I,1-dichloroethanemg/kgDETS 068*I,1-dichloroethanemg/kgDETS 068*	1,2-dichlorobenzene	mg/kg	DETS 068*				
Hexachlorobutadienemg/kgDETS 068*Naphthalenemg/kgDETS 068*1,2,3-trichlorobenzenemg/kgDETS 068*Trichloroethylenemg/kgDETS 068*Methylene Chloridemg/kgDETS 068*1,1 Dichloroethylenemg/kgDETS 068*1,2-dichloroethanemg/kgDETS 068*Benzenemg/kgDETS 068*Carbon tetrachloride + 1,1-dichloropropenemg/kgDETS 068*1,1.1-trichloroethanemg/kgDETS 068*Chloroformmg/kgDETS 068*Bromochloromethanemg/kgDETS 068*2,2-dichloroopane+1,2-dichloroethylenemg/kgDETS 068*1,1-dichloropthanemg/kgDETS 068*2,2-dichloroopane+1,2-dichloroethylenemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*2,2-dichloroopane+1,2-dichloroethylenemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*	1,2-dibromo-3-chloropropane	mg/kg	DETS 068*				
Naphthalenemg/kgDETS 068*1,2,3-trichlorobenzenemg/kgDETS 068*Trichloroethylenemg/kgDETS 068*Methylene Chloridemg/kgDETS 068*1,1 Dichloroethylenemg/kgDETS 068*1,2-dichloroethanemg/kgDETS 068*Benzenemg/kgDETS 068*Carbon tetrachloride + 1,1-dichloropropenemg/kgDETS 068*1,1,1-trichloroethanemg/kgDETS 068*Chloroformmg/kgDETS 068*Bromochloromethanemg/kgDETS 068*2,2-dichloroopane+1,2-dichloroethylenemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*1,1-dichloropane+1,2-dichloroethylenemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*	1,2,4-trichlorobenzene	mg/kg	DETS 068*				
1,2,3-trichlorobenzenemg/kgDETS 068*Trichloroethylenemg/kgDETS 068*Methylene Chloridemg/kgDETS 068*1,1 Dichloroethylenemg/kgDETS 068*1,2-dichloroethanemg/kgDETS 068*Benzenemg/kgDETS 068*Carbon tetrachloride + 1,1-dichloropropenemg/kgDETS 068*1,1,1-trichloroethanemg/kgDETS 068*Chloroformmg/kgDETS 068*Bromochloromethanemg/kgDETS 068*2,2-dichloroopane+1,2-dichloroethylenemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*	Hexachlorobutadiene	mg/kg	DETS 068*				
Trichloroethylenemg/kgDETS 068*Methylene Chloridemg/kgDETS 068*1,1 Dichloroethylenemg/kgDETS 068*1,2-dichloroethanemg/kgDETS 068*Benzenemg/kgDETS 068*Carbon tetrachloride + 1,1-dichloropropenemg/kgDETS 068*1,1,1-trichloroethanemg/kgDETS 068*Chloroformmg/kgDETS 068*Bromochloromethanemg/kgDETS 068*2,2-dichloroopane+1,2-dichloroethylenemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*	Naphthalene	mg/kg	DETS 068*				
Methylene Chloridemg/kgDETS 068*1,1 Dichloroethylenemg/kgDETS 068*1,2-dichloroethanemg/kgDETS 068*Benzenemg/kgDETS 068*Carbon tetrachloride + 1,1-dichloropropenemg/kgDETS 068*1,1,1-trichloroethanemg/kgDETS 068*Chloroformmg/kgDETS 068*Bromochloromethanemg/kgDETS 068*2,2-dichloroopane+1,2-dichloroethylenemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*	1,2,3-trichlorobenzene	mg/kg	DETS 068*				
1,1ng/kgDETS 068*1,2-dichloroethanemg/kgDETS 068*Benzenemg/kgDETS 068*Carbon tetrachloride + 1,1-dichloropropenemg/kgDETS 068*1,1,1-trichloroethanemg/kgDETS 068*Chloroformmg/kgDETS 068*Bromochloromethanemg/kgDETS 068*2,2-dichloroopane+1,2-dichloroethylenemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*	Trichloroethylene	mg/kg	DETS 068*				
1,2-dichloroethanemg/kgDETS 068*Benzenemg/kgDETS 068*Carbon tetrachloride + 1,1-dichloropropenemg/kgDETS 068*1,1,1-trichloroethanemg/kgDETS 068*Chloroformmg/kgDETS 068*Bromochloromethanemg/kgDETS 068*2,2-dichlororopane+1,2-dichloroethylenemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*	Methylene Chloride	mg/kg	DETS 068*				
Benzenemg/kgDETS 068*Carbon tetrachloride + 1,1-dichloropropenemg/kgDETS 068*1,1,1-trichloroethanemg/kgDETS 068*Chloroformmg/kgDETS 068*Bromochloromethanemg/kgDETS 068*2,2-dichlororopane+1,2-dichloroethylenemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*	1,1 Dichloroethylene	mg/kg	DETS 068*				
Carbon tetrachloride + 1,1-dichloropropenemg/kgDETS 068*1,1,1-trichloroethanemg/kgDETS 068*Chloroformmg/kgDETS 068*Bromochloromethanemg/kgDETS 068*2,2-dichlororopane+1,2-dichloroethylenemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*	1,2-dichloroethane	mg/kg	DETS 068*				
1,1,1-trichloroethane mg/kg DETS 068* Chloroform mg/kg DETS 068* Bromochloromethane mg/kg DETS 068* 2,2-dichlororopane+1,2-dichloroethylene mg/kg DETS 068* 1,1-dichloroethane mg/kg DETS 068*	Benzene	mg/kg	DETS 068*				
Chloroform mg/kg DETS 068* Bromochloromethane mg/kg DETS 068* 2,2-dichlororopane+1,2-dichloroethylene mg/kg DETS 068* 1,1-dichloroethane mg/kg DETS 068*	Carbon tetrachloride + 1,1-dichloropropene	mg/kg	DETS 068*				
Chloroform mg/kg DETS 068* Bromochloromethane mg/kg DETS 068* 2,2-dichlororopane+1,2-dichloroethylene mg/kg DETS 068* 1,1-dichloroethane mg/kg DETS 068*	1,1,1-trichloroethane		DETS 068*				
2,2-dichloroopane+1,2-dichloroethylenemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*	Chloroform	mg/kg					
2,2-dichloroopane+1,2-dichloroethylenemg/kgDETS 068*1,1-dichloroethanemg/kgDETS 068*	Bromochloromethane	mg/kg	DETS 068*				
1,1-dichloroethane mg/kg DETS 068*	2,2-dichlororopane+1,2-dichloroethylene		DETS 068*				
			DETS 068*				
	Trans-1,2-dichloroethylene	mg/kg	DETS 068*				

		Lab No.	116587	116588	116589	116590
		Sample Ref	WS04	WS04	WS05	WS05
		Depth	0.30	1.30	0.50	1.50
		Other Ref				
		Sample Type	J	J	J	D
Test	Units	DETSxx				
Arsenic	mg/kg	DETS 042#	8	10	3	1
Cadmium	mg/kg	DETS 042	0.8	0.9	1.0	0.8
Chromium	mg/kg	DETS 042	24	37	27	32
Copper	mg/kg	DETS 042	9	23	10	7
Lead	mg/kg	DETS 042	16	16	11	4
Mercury	mg/kg	DETS 081*	< 0.3	< 0.3	< 0.3	< 0.3
Nickel	mg/kg	DETS 042	17	42	34	46
Selenium	mg/kg	DETS 042	< 0.3	< 0.3	< 0.3	< 0.3
Zinc	mg/kg	DETS 042#	43	64	55	64
Boron (water soluble)	mg/kg	DETS 020#	1.1	1.4	1.0	1.0
Cyanide free	mg/kg	DETS 067#	< 0.1	< 0.1	< 0.1	< 0.1
pH		DETS 008#	8.2	8.3	8.5	8.5
Aliphatic C5-C6	mg/kg	DETS 072*				
Aliphatic C6-C8	mg/kg	DETS 072*				
Aliphatic C8-C10	mg/kg	DETS 072*				
Aliphatic C10-C12	mg/kg	DETS 072*				
Aliphatic C12-C16	mg/kg	DETS 072*				
Aliphatic C16-C21	mg/kg	DETS 072*				
Aliphatic C21-C35	mg/kg	DETS 072*				
Aromatic C5-C7	mg/kg	DETS 072*				
Aromatic C7-C8	mg/kg	DETS 072*				
Aromatic C8-C10	mg/kg	DETS 072*				
Aromatic C10-C12	mg/kg	DETS 072*				
Aromatic C12-C16	mg/kg	DETS 072*				
Aromatic C16-C21	mg/kg	DETS 072*				
Aromatic C21-C35	mg/kg	DETS 072*				
Aliphatic C5-C35	mg/kg	DETS 072*				
Aromatic C5-C35	mg/kg	DETS 072*				
TPH Ali/Aro	mg/kg	DETS 072*				

		Lab No.	116587	116588	116589	116590
		Sample Ref	WS04	WS04	WS05	WS05
		Depth	0.30	1.30	0.50	1.50
		Other Ref Sample Type				P
Test	Units	DETSxx	J	J	J	D
Acenaphthene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Acenapthylene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Anthracene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)anthracene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(b)fluoranthene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	mg/kg	DETS 050	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1	< 0.1
Benzo(g,h,i)perylene		DETS 050	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1	< 0.1
Chrysene	mg/kg mg/kg	DETS 050	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1
-		DETS 050	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1
Dibenzo(a,h)anthracene Fluoranthene	mg/kg		< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1
	mg/kg	DETS 050	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1
Fluorene	mg/kg	DETS 050				
Indeno(1,2,3-c,d)pyrene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Napthalene	mg/kg	DETS 050	0.3	0.3	0.3	0.3
Phenanthrene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Pyrene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
PAH	mg/kg	DETS 050	< 5.0	< 5.0	< 5.0	< 5.0
Benzene	mg/kg	DETS 062#				
Ethylbenzene	mg/kg	DETS 062#				
Toluene	mg/kg	DETS 062#				
Xylene	mg/kg	DETS 062#				
Phenol - Monohydric	mg/kg	DETS 067#				
PCB	mg/kg	DETS 052*				
2,4,4'-Trichlorobiphenyl PCB 28	mg/kg	DETS 052*				
2,2',5,5'-Tetrachlorobiphenyl PCB 52	mg/kg	DETS 052*				
2,2',4,5,5'-Pentachlorobiphenyl PCB 101	mg/kg	DETS 052*				
2,3',4,4',5-Pentachlorobiphenyl PCB 118	mg/kg	DETS 052*				
2,2',4,4',5,5'-Hexachlorobiphenyl PCB 153	mg/kg	DETS 052*				
2,2',3,4,4',5'-Hexachlorobiphenyl PCB 138	mg/kg	DETS 052*				
2,2',3,4,4',5,5'-Heptachlorobiphenyl PCB 180	mg/kg	DETS 052*				
Total VOC's	mg/kg	DETS 068*				
1,2-dichloropropane	mg/kg	DETS 068*				
Dibromomethane	mg/kg	DETS 068*				
Bromodichloromethane	mg/kg	DETS 068*				
cis-1,3-dichloropropene	mg/kg	DETS 068*				
Toluene	mg/kg	DETS 068*				
trans-1,3-dichloropropene	mg/kg	DETS 068*				
1,1,2-trichloroethane	mg/kg	DETS 068*				
Tetrachloroethylene	mg/kg	DETS 068*				
1,3-dichloropropane	mg/kg	DETS 068*				
Dibromochloromethane	mg/kg	DETS 068*				
1,2-dibromoethane	mg/kg	DETS 068*				
Chlorobenzene	mg/kg	DETS 068*				
Ethylbenzene+1,1,1,2-tetrachloroethane	mg/kg	DETS 068*				
m+p-Xylene	mg/kg	DETS 068*				

TestUnitsDifferento-Xylenemg/kgDifferentStyrenemg/kgDifferentBromoformmg/kgDifferentIsopropylbenzenemg/kgDifferentBromobenzenemg/kgDifferent1,2,3-trichloropropanemg/kgDifferentn-propylbenzenemg/kgDifferent2-chlorotoluenemg/kgDifferent1,3,5-trimethylbenzenemg/kgDifferent4-chlorotoluenemg/kgDifferent1,2,4-trimethylbenzenemg/kgDifferent1,3-dichlorobenzene+p-isopropyltoluenemg/kgDifferent1,2-dibromo-3-chloropropanemg/kgDifferent1,2-dibromo-3-chloropropanemg/kgDifferent1,2,4-trinchlorobenzenemg/kgDifferent1,2,4-trichlorobenzenemg/kgDifferent1,2,4-trichlorobenzenemg/kgDifferent1,2,4-trichlorobenzenemg/kgDifferent1,2,3-trichlorobenzenemg/kgDifferent1,2,3-trichlorobenzenemg/kgDifferent1,2,3-trichlorobenzenemg/kgDifferent1,2,3-trichlorobenzenemg/kgDifferent1,2,3-trichlorobenzenemg/kgDifferent1,2,3-trichlorobenzenemg/kgDifferent1,2,3-trichlorobenzenemg/kgDifferent1,2,3-trichlorobenzenemg/kgDifferent1,2,3-trichlorobenzenemg/kgDifferent1,2,3-trichlorobenzenemg/kgDifferent1,2,3-trichl	The second state Depth Other Ref ople Type TSxx TS 068* TS 068*	WS04 0.30 J	WS04 1.30 J	WS05 0.50 J	WS05 1.50 D
TestUnitsDatao-Xylenemg/kgDEStyrenemg/kgDEBromoformmg/kgDElsopropylbenzenemg/kgDEBromobenzenemg/kgDE1,2,3-trichloropropanemg/kgDE-propylbenzenemg/kgDE2-chlorotoluenemg/kgDE1,3,5-trimethylbenzenemg/kgDE1,2,4-trimethylbenzenemg/kgDE1,2,4-trimethylbenzenemg/kgDE1,3-dichlorobenzene+p-isopropyltoluenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kg </th <th>Other Ref nple Type TSxx TS 068* TS 068* TS 068* TS 068* TS 068* TS 068*</th> <th></th> <th></th> <th></th> <th></th>	Other Ref nple Type TSxx TS 068* TS 068* TS 068* TS 068* TS 068* TS 068*				
TestUnitsDatao-Xylenemg/kgDEStyrenemg/kgDEBromoformmg/kgDElsopropylbenzenemg/kgDEBromobenzenemg/kgDE1,2,3-trichloropropanemg/kgDE-propylbenzenemg/kgDE2-chlorotoluenemg/kgDE1,3,5-trimethylbenzenemg/kgDE1,2,4-trimethylbenzenemg/kgDE1,2,4-trimethylbenzenemg/kgDE1,3-dichlorobenzene+p-isopropyltoluenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/k	nple Type TSxx TS 068* TS 068* TS 068* TS 068* TS 068*	J	J	J	D
TestUnitsDEo-Xylenemg/kgDEStyrenemg/kgDEBromoformmg/kgDElsopropylbenzenemg/kgDEBromobenzenemg/kgDE1,2,3-trichloropropanemg/kgDEn-propylbenzenemg/kgDE2-chlorotoluenemg/kgDE1,3,5-trimethylbenzenemg/kgDE4-chlorotoluenemg/kgDE1,2,4-trimethylbenzenemg/kgDE1,2,4-trimethylbenzenemg/kgDE1,3,5-trimethylbenzenemg/kgDE1,2,4-trimethylbenzenemg/kgDE1,3-dichlorobenzene+p-isopropyltoluenemg/kgDE1,4-dichlorobenzenemg/kgDE1,2-dibromo-3-chloropropanemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzene <t< th=""><th>TS xx TS 068* TS 068* TS 068* TS 068* TS 068*</th><th>J</th><th>J</th><th>J</th><th>D</th></t<>	TS xx TS 068* TS 068* TS 068* TS 068* TS 068*	J	J	J	D
o-Xylenemg/kgDEStyrenemg/kgDEBromoformmg/kgDElsopropylbenzenemg/kgDEBromobenzenemg/kgDE1,2,3-trichloropropanemg/kgDEn-propylbenzenemg/kgDE2-chlorotoluenemg/kgDE1,3,5-trimethylbenzenemg/kgDE4-chlorotoluenemg/kgDE1,2,4-trimethylbenzenemg/kgDE1,2,4-trimethylbenzenemg/kgDE1,3-dichlorobenzene+p-isopropyltoluenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dibromo-3-chloropropanemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDETrichloroethylenemg/kgDETrichloroethylenemg/kgDETrichloroethylenemg/kgDETrichloroethylenemg/kgDETrichloroethylenemg/kg <th>TS 068* TS 068* TS 068* TS 068* TS 068*</th> <th></th> <th></th> <th></th> <th></th>	TS 068* TS 068* TS 068* TS 068* TS 068*				
Styrenemg/kgDEBromoformmg/kgDEIsopropylbenzenemg/kgDEBromobenzenemg/kgDE1,2,3-trichloropropanemg/kgDEn-propylbenzenemg/kgDE2-chlorotoluenemg/kgDE1,3,5-trimethylbenzenemg/kgDE4-chlorotoluenemg/kgDE1,2,4-trimethylbenzenemg/kgDE1,2,4-trimethylbenzenemg/kgDE1,3-dichlorobenzene+p-isopropyltoluenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dibromo-3-chloropropanemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE	TS 068* TS 068* TS 068* TS 068*				
Bromoformmg/kgDEIsopropylbenzenemg/kgDEBromobenzenemg/kgDE1,2,3-trichloropropanemg/kgDEn-propylbenzenemg/kgDE2-chlorotoluenemg/kgDE1,3,5-trimethylbenzenemg/kgDE4-chlorotoluenemg/kgDE1,2,4-trimethylbenzenemg/kgDE1,2,4-trimethylbenzenemg/kgDE1,3-dichlorobenzene+p-isopropyltoluenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dibromo-3-chloropropanemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE <td>TS 068* TS 068* TS 068*</td> <td></td> <td></td> <td></td> <td></td>	TS 068* TS 068* TS 068*				
Isopropylbenzenemg/kgDEBromobenzenemg/kgDE1,2,3-trichloropropanemg/kgDEn-propylbenzenemg/kgDE2-chlorotoluenemg/kgDE1,3,5-trimethylbenzenemg/kgDE4-chlorotoluenemg/kgDE1,2,4-trimethylbenzenemg/kgDE1,2,4-trimethylbenzenemg/kgDE1,2,4-trimethylbenzenemg/kgDE1,3-dichlorobenzene+p-isopropyltoluenemg/kgDE1,4-dichlorobenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dibromo-3-chloropropanemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kg<	TS 068* TS 068*				
Bromobenzenemg/kgDE1,2,3-trichloropropanemg/kgDEn-propylbenzenemg/kgDE2-chlorotoluenemg/kgDE1,3,5-trimethylbenzenemg/kgDE4-chlorotoluenemg/kgDE1,2,4-trimethylbenzenemg/kgDE1,2,4-trimethylbenzenemg/kgDE1,2,4-trimethylbenzenemg/kgDE1,3-dichlorobenzene+p-isopropyltoluenemg/kgDE1,4-dichlorobenzenemg/kgDE1,2-dibromo-3-chloropropanemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzene<	TS 068*				
1,2,3-trichloropropanemg/kgDEn-propylbenzenemg/kgDE2-chlorotoluenemg/kgDE1,3,5-trimethylbenzenemg/kgDE4-chlorotoluenemg/kgDE1,2,4-trimethylbenzenemg/kgDE1,2,4-trimethylbenzenemg/kgDE1,2,4-trimethylbenzenemg/kgDE1,3-dichlorobenzene+p-isopropyltoluenemg/kgDE1,4-dichlorobenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dibromo-3-chloropropanemg/kgDE1,2,3-trichlorobenzen					
n-propylbenzenemg/kgDE2-chlorotoluenemg/kgDE1,3,5-trimethylbenzenemg/kgDE4-chlorotoluenemg/kgDE1,2,4-trimethylbenzenemg/kgDE1,2,4-trimethylbenzenemg/kgDE1,3-dichlorobenzene+p-isopropyltoluenemg/kgDE1,4-dichlorobenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dibromo-3-chloropropanemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,3,3-trichlorobenzene </td <td>TS 068*</td> <td></td> <td></td> <td></td> <td></td>	TS 068*				
2-chlorotoluenemg/kgDE1,3,5-trimethylbenzenemg/kgDE4-chlorotoluenemg/kgDETert-butylbenzenemg/kgDE1,2,4-trimethylbenzenemg/kgDEsec-butylbenzenemg/kgDE1,3-dichlorobenzene+p-isopropyltoluenemg/kgDE1,4-dichlorobenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDENaphthalenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,3,3-trichlorobenzenemg/kgDE					
1,3,5-trimethylbenzenemg/kgDE4-chlorotoluenemg/kgDETert-butylbenzenemg/kgDE1,2,4-trimethylbenzenemg/kgDEsec-butylbenzenemg/kgDE1,3-dichlorobenzene+p-isopropyltoluenemg/kgDE1,4-dichlorobenzenemg/kgDEn-butylbenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dibromo-3-chloropropanemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,3,3-trichlorobenzenemg/kgDE1,3,3,4,4,4,4,4,4,4,4,4,4,4,4	TS 068*				
4-chlorotoluenemg/kgDETert-butylbenzenemg/kgDE1,2,4-trimethylbenzenemg/kgDEsec-butylbenzenemg/kgDE1,3-dichlorobenzene+p-isopropyltoluenemg/kgDE1,4-dichlorobenzenemg/kgDEn-butylbenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dibromo-3-chloropropanemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDETrichloroethylenemg/kgDE	TS 068*				
Tert-butylbenzenemg/kgDE1,2,4-trimethylbenzenemg/kgDEsec-butylbenzenemg/kgDE1,3-dichlorobenzene+p-isopropyltoluenemg/kgDE1,4-dichlorobenzenemg/kgDEn-butylbenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDETrichloroethylenemg/kgDE	TS 068*				
1,2,4-trimethylbenzenemg/kgDEsec-butylbenzenemg/kgDE1,3-dichlorobenzene+p-isopropyltoluenemg/kgDE1,4-dichlorobenzenemg/kgDEn-butylbenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,4-trichlorobenzenemg/kgDENaphthalenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDETrichloroethylenemg/kgDE	TS 068*				
sec-butylbenzenemg/kgDE1,3-dichlorobenzene+p-isopropyltoluenemg/kgDE1,4-dichlorobenzenemg/kgDEn-butylbenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dibromo-3-chloropropanemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDENaphthalenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDETrichloroethylenemg/kgDE	TS 068*				
1,3-dichlorobenzene+p-isopropyltoluenemg/kgDE1,4-dichlorobenzenemg/kgDEn-butylbenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dibromo-3-chloropropanemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,4-trichlorobutadienemg/kgDENaphthalenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDETrichlorobenzenemg/kgDETrichlorobenzenemg/kgDETrichlorobenzenemg/kgDE	TS 068*				
1,4-dichlorobenzenemg/kgDEn-butylbenzenemg/kgDE1,2-dichlorobenzenemg/kgDE1,2-dibromo-3-chloropropanemg/kgDE1,2,4-trichlorobenzenemg/kgDE1,2,4-trichlorobutadienemg/kgDENaphthalenemg/kgDE1,2,3-trichlorobenzenemg/kgDETrichlorobenzenemg/kgDE1,2,3-trichlorobenzenemg/kgDETrichlorobenzenemg/kgDETrichlorobenzenemg/kgDE	TS 068*				
n-butylbenzene mg/kg DE 1,2-dichlorobenzene mg/kg DE 1,2-dibromo-3-chloropropane mg/kg DE 1,2,4-trichlorobenzene mg/kg DE Hexachlorobutadiene mg/kg DE Naphthalene mg/kg DE 1,2,3-trichlorobenzene mg/kg DE Trichloroethylene mg/kg DE	TS 068*				
1,2-dichlorobenzenemg/kgDE1,2-dibromo-3-chloropropanemg/kgDE1,2,4-trichlorobenzenemg/kgDEHexachlorobutadienemg/kgDENaphthalenemg/kgDE1,2,3-trichlorobenzenemg/kgDETrichloroethylenemg/kgDE	TS 068*				
1,2-dibromo-3-chloropropanemg/kgDE1,2,4-trichlorobenzenemg/kgDEHexachlorobutadienemg/kgDENaphthalenemg/kgDE1,2,3-trichlorobenzenemg/kgDETrichloroethylenemg/kgDE	TS 068*				
1,2,4-trichlorobenzenemg/kgDEHexachlorobutadienemg/kgDENaphthalenemg/kgDE1,2,3-trichlorobenzenemg/kgDETrichloroethylenemg/kgDE	TS 068*				
Hexachlorobutadienemg/kgDENaphthalenemg/kgDE1,2,3-trichlorobenzenemg/kgDETrichloroethylenemg/kgDE	TS 068*				
Naphthalenemg/kgDE1,2,3-trichlorobenzenemg/kgDETrichloroethylenemg/kgDE	TS 068*				
1,2,3-trichlorobenzenemg/kgDETrichloroethylenemg/kgDE	TS 068*				
Trichloroethylene mg/kg DE	TS 068*				
, , , , , , , , , , , , , , , , , , , ,	TS 068*				
	TS 068*				
Methylene Chloride mg/kg DE	TS 068*				
1,1 Dichloroethylene mg/kg DE	TS 068*				
1,2-dichloroethane mg/kg DE	TS 068*				
Benzene mg/kg DE	TS 068*				
Carbon tetrachloride + 1,1-dichloropropene mg/kg DE	TS 068*				
	TS 068*				
Chloroform mg/kg DE	TS 068*				
	TS 068*				
	TS 068*				
	TS 068*				
Trans-1,2-dichloroethylene mg/kg DE	TO 000*				

		Lab No.	116591	116592	116593	116594
		Sample Ref	WS06	WS06	WS07	WS07
		Depth	0.70	1.50	0.50	1.50
		Other Ref				
		Sample Type	D	D	J	D
Test	Units	DETSxx				
Arsenic	mg/kg	DETS 042#	8	7	8	5
Cadmium	mg/kg	DETS 042	0.7	0.6	0.6	0.5
Chromium	mg/kg	DETS 042	14	22	20	23
Copper	mg/kg	DETS 042	14	19	20	27
Lead	mg/kg	DETS 042	69	12	12	12
Mercury	mg/kg	DETS 081*	< 0.3	< 0.3	< 0.3	< 0.3
Nickel	mg/kg	DETS 042	14	27	15	35
Selenium	mg/kg	DETS 042	< 0.3	< 0.3	< 0.3	< 0.3
Zinc	mg/kg	DETS 042#	65	43	31	40
Boron (water soluble)	mg/kg	DETS 020#	0.8	0.6	0.7	0.8
Cyanide free	mg/kg	DETS 067#	< 0.1	< 0.1	< 0.1	< 0.1
рН		DETS 008#	8.4	8.3	8.1	8.2
Aliphatic C5-C6	mg/kg	DETS 072*				
Aliphatic C6-C8	mg/kg	DETS 072*				
Aliphatic C8-C10	mg/kg	DETS 072*				
Aliphatic C10-C12	mg/kg	DETS 072*				
Aliphatic C12-C16	mg/kg	DETS 072*				
Aliphatic C16-C21	mg/kg	DETS 072*				
Aliphatic C21-C35	mg/kg	DETS 072*				
Aromatic C5-C7	mg/kg	DETS 072*				
Aromatic C7-C8	mg/kg	DETS 072*				
Aromatic C8-C10	mg/kg	DETS 072*				
Aromatic C10-C12	mg/kg	DETS 072*				
Aromatic C12-C16	mg/kg	DETS 072*				
Aromatic C16-C21	mg/kg	DETS 072*				
Aromatic C21-C35	mg/kg	DETS 072*				
Aliphatic C5-C35	mg/kg	DETS 072*				
Aromatic C5-C35	mg/kg	DETS 072*				
TPH Ali/Aro	mg/kg	DETS 072*				

		Lab No.	116591	116592	116593	116594
		Sample Ref	WS06	WS06	WS07	WS07
		Depth Other Ref	0.70	1.50	0.50	1.50
		Sample Type	D	D	J	D
Test	Units	DETSxx	D	D	0	D
Acenaphthene	mg/kg	DETS 050	0.1	< 0.1	< 0.1	< 0.1
Acenapthylene	mg/kg	DETS 050	0.1	< 0.1	< 0.1	< 0.1
Anthracene	mg/kg	DETS 050	0.3	< 0.1	< 0.1	0.1
Benzo(a)anthracene	mg/kg	DETS 050	1.3	< 0.1	< 0.1	0.3
Benzo(a)pyrene	mg/kg	DETS 050	1.6	< 0.1	< 0.1	< 0.1
Benzo(b)fluoranthene	mg/kg	DETS 050	2.3	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	mg/kg	DETS 050	0.7	< 0.1	< 0.1	< 0.1
Benzo(g,h,i)perylene	mg/kg	DETS 050	1.3	< 0.1	< 0.1	< 0.1
Chrysene	mg/kg	DETS 050	1.3	< 0.1	< 0.1	0.2
Dibenzo(a,h)anthracene	mg/kg	DETS 050	0.7	< 0.1	0.4	< 0.1
Fluoranthene	mg/kg	DETS 050	2.5	< 0.1 < 0.1	0.4 < 0.1	0.3
Fluorene	mg/kg	DETS 050	0.2	< 0.1 < 0.1	< 0.1 < 0.1	0.3 < 0.1
			1.6			< 0.1 < 0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	DETS 050		< 0.1	< 0.1	
Napthalene	mg/kg	DETS 050	0.4	0.3	0.3	0.3
Phenanthrene	mg/kg	DETS 050	1.0	< 0.1	< 0.1	0.1
Pyrene	mg/kg	DETS 050	2.1	< 0.1	< 0.1	0.3
PAH	mg/kg	DETS 050	18	< 5.0	< 5.0	< 5.0
Benzene	mg/kg	DETS 062#				
Ethylbenzene	mg/kg	DETS 062#				
Toluene	mg/kg	DETS 062#				
Xylene	mg/kg	DETS 062#				
Phenol - Monohydric	mg/kg	DETS 067#				
PCB	mg/kg	DETS 052*				
2,4,4'-Trichlorobiphenyl PCB 28	mg/kg	DETS 052*				
2,2',5,5'-Tetrachlorobiphenyl PCB 52	mg/kg	DETS 052*				
2,2',4,5,5'-Pentachlorobiphenyl PCB 101	mg/kg	DETS 052*				
2,3',4,4',5-Pentachlorobiphenyl PCB 118	mg/kg	DETS 052*				
2,2',4,4',5,5'-Hexachlorobiphenyl PCB 153	mg/kg	DETS 052*				
2,2',3,4,4',5'-Hexachlorobiphenyl PCB 138	mg/kg	DETS 052*				
2,2',3,4,4',5,5'-Heptachlorobiphenyl PCB 180	mg/kg	DETS 052*				
Total VOC's	mg/kg	DETS 068*				
1,2-dichloropropane	mg/kg	DETS 068*				
Dibromomethane	mg/kg	DETS 068*				
Bromodichloromethane	mg/kg	DETS 068*				
cis-1,3-dichloropropene	mg/kg	DETS 068*				
Toluene	mg/kg	DETS 068*				
trans-1,3-dichloropropene	mg/kg	DETS 068*				
1,1,2-trichloroethane	mg/kg	DETS 068*				
Tetrachloroethylene	mg/kg	DETS 068*				
1,3-dichloropropane	mg/kg	DETS 068*				
Dibromochloromethane	mg/kg	DETS 068*				
1,2-dibromoethane	mg/kg	DETS 068*				
Chlorobenzene	mg/kg	DETS 068*				
Ethylbenzene+1,1,1,2-tetrachloroethane	mg/kg	DETS 068*				
m+p-Xylene	mg/kg	DETS 068*				

TestUnitso-Xylenemg/kgStyrenemg/kgBromoformmg/kgIsopropylbenzenemg/kgBromobenzenemg/kg1,2,3-trichloropropanemg/kgn-propylbenzenemg/kg2-chlorotoluenemg/kg1,3,5-trimethylbenzenemg/kg4-chlorotoluenemg/kgTert-butylbenzenemg/kg1,2,4-trimethylbenzenemg/kg	Sample Ref Depth	WS06 0.70	WS06	WS07	WS07
o-Xylenemg/kgStyrenemg/kgBromoformmg/kgIsopropylbenzenemg/kgBromobenzenemg/kg1,2,3-trichloropropanemg/kgn-propylbenzenemg/kg2-chlorotoluenemg/kg1,3,5-trimethylbenzenemg/kg4-chlorotoluenemg/kgTert-butylbenzenemg/kg	Depth	0.70			VV 507
o-Xylenemg/kgStyrenemg/kgBromoformmg/kgIsopropylbenzenemg/kgBromobenzenemg/kg1,2,3-trichloropropanemg/kgn-propylbenzenemg/kg2-chlorotoluenemg/kg1,3,5-trimethylbenzenemg/kg4-chlorotoluenemg/kgTert-butylbenzenemg/kg		0.70	1.50	0.50	1.50
o-Xylenemg/kgStyrenemg/kgBromoformmg/kgIsopropylbenzenemg/kgBromobenzenemg/kg1,2,3-trichloropropanemg/kgn-propylbenzenemg/kg2-chlorotoluenemg/kg1,3,5-trimethylbenzenemg/kg4-chlorotoluenemg/kgTert-butylbenzenemg/kg	Other Ref				
o-Xylenemg/kgStyrenemg/kgBromoformmg/kgIsopropylbenzenemg/kgBromobenzenemg/kg1,2,3-trichloropropanemg/kgn-propylbenzenemg/kg2-chlorotoluenemg/kg1,3,5-trimethylbenzenemg/kg4-chlorotoluenemg/kgTert-butylbenzenemg/kg	Sample Type	D	D	J	D
Styrenemg/kgBromoformmg/kgIsopropylbenzenemg/kgBromobenzenemg/kg1,2,3-trichloropropanemg/kgn-propylbenzenemg/kg2-chlorotoluenemg/kg1,3,5-trimethylbenzenemg/kg4-chlorotoluenemg/kgTert-butylbenzenemg/kg	DETSxx				
Bromoformmg/kgIsopropylbenzenemg/kgBromobenzenemg/kg1,2,3-trichloropropanemg/kgn-propylbenzenemg/kg2-chlorotoluenemg/kg1,3,5-trimethylbenzenemg/kg4-chlorotoluenemg/kgTert-butylbenzenemg/kg	DETS 068*				
Isopropylbenzenemg/kgBromobenzenemg/kg1,2,3-trichloropropanemg/kgn-propylbenzenemg/kg2-chlorotoluenemg/kg1,3,5-trimethylbenzenemg/kg4-chlorotoluenemg/kgTert-butylbenzenemg/kg	DETS 068*				
Bromobenzenemg/kg1,2,3-trichloropropanemg/kgn-propylbenzenemg/kg2-chlorotoluenemg/kg1,3,5-trimethylbenzenemg/kg4-chlorotoluenemg/kgTert-butylbenzenemg/kg	DETS 068*				
1,2,3-trichloropropanemg/kgn-propylbenzenemg/kg2-chlorotoluenemg/kg1,3,5-trimethylbenzenemg/kg4-chlorotoluenemg/kgTert-butylbenzenemg/kg	DETS 068*				
n-propylbenzenemg/kg2-chlorotoluenemg/kg1,3,5-trimethylbenzenemg/kg4-chlorotoluenemg/kgTert-butylbenzenemg/kg	DETS 068*				
2-chlorotoluenemg/kg1,3,5-trimethylbenzenemg/kg4-chlorotoluenemg/kgTert-butylbenzenemg/kg	DETS 068*				
1,3,5-trimethylbenzenemg/kg4-chlorotoluenemg/kgTert-butylbenzenemg/kg	DETS 068*				
4-chlorotoluenemg/kgTert-butylbenzenemg/kg	DETS 068*				
Tert-butylbenzene mg/kg	DETS 068*				
	DETS 068*				
1,2,4-trimethylbenzene mg/kg	DETS 068*				
	DETS 068*				
sec-butylbenzene mg/kg	DETS 068*				
1,3-dichlorobenzene+p-isopropyltoluene mg/kg	DETS 068*				
1,4-dichlorobenzene mg/kg	DETS 068*				
n-butylbenzene mg/kg	DETS 068*				
1,2-dichlorobenzene mg/kg	DETS 068*				
1,2-dibromo-3-chloropropane mg/kg	DETS 068*				
1,2,4-trichlorobenzene mg/kg	DETS 068*				
Hexachlorobutadiene mg/kg	DETS 068*				
Naphthalene mg/kg	DETS 068*				
1,2,3-trichlorobenzene mg/kg	DETS 068*				
Trichloroethylene mg/kg	DETS 068*				
Methylene Chloride mg/kg	DETS 068*				
1,1 Dichloroethylene mg/kg	DETS 068*				
1,2-dichloroethane mg/kg	DETS 068*				
Benzene mg/kg	DETS 068*				
Carbon tetrachloride + 1,1-dichloropropene mg/kg	DETS 068*				
1,1,1-trichloroethane mg/kg	DETS 068*				
Chloroform mg/kg	DETS 068*				
Bromochloromethane mg/kg	DETS 068*				
2,2-dichlororopane+1,2-dichloroethylene mg/kg	DETS 068*				
1,1-dichloroethane mg/kg	DETS 068*				
Trans-1,2-dichloroethylene mg/kg					

		Lab No.	116595	116596	116597	116598
		Sample Ref	WS08	WS09	WS09	WS10
		Depth	0.70	0.50	1.00	1.50
		Other Ref				
		Sample Type	J	J	D	D
Test	Units	DETSxx				
Arsenic	mg/kg	DETS 042#	4	7	8	7
Cadmium	mg/kg	DETS 042	0.4	0.7	0.6	0.7
Chromium	mg/kg	DETS 042	12	26	19	24
Copper	mg/kg	DETS 042	11	19	13	18
Lead	mg/kg	DETS 042	20	21	29	18
Mercury	mg/kg	DETS 081*	< 0.3	< 0.3	< 0.3	< 0.3
Nickel	mg/kg	DETS 042	13	28	14	26
Selenium	mg/kg	DETS 042	< 0.3	< 0.3	< 0.3	< 0.3
Zinc	mg/kg	DETS 042#	27	52	40	51
Boron (water soluble)	mg/kg	DETS 020#	0.6	1.7	1.0	1.9
Cyanide free	mg/kg	DETS 067#	< 0.1	< 0.1	< 0.1	< 0.1
рН		DETS 008#	8.0	8.4	8.0	8.3
Aliphatic C5-C6	mg/kg	DETS 072*				< 0.01
Aliphatic C6-C8	mg/kg	DETS 072*				< 0.01
Aliphatic C8-C10	mg/kg	DETS 072*				< 0.01
Aliphatic C10-C12	mg/kg	DETS 072*				< 0.1
Aliphatic C12-C16	mg/kg	DETS 072*				< 0.1
Aliphatic C16-C21	mg/kg	DETS 072*				< 0.1
Aliphatic C21-C35	mg/kg	DETS 072*				< 0.1
Aromatic C5-C7	mg/kg	DETS 072*				< 0.01
Aromatic C7-C8	mg/kg	DETS 072*				< 0.01
Aromatic C8-C10	mg/kg	DETS 072*				< 0.01
Aromatic C10-C12	mg/kg	DETS 072*				< 0.1
Aromatic C12-C16	mg/kg	DETS 072*				< 0.1
Aromatic C16-C21	mg/kg	DETS 072*				< 0.1
Aromatic C21-C35	mg/kg	DETS 072*				< 0.1
Aliphatic C5-C35	mg/kg	DETS 072*				< 0.1
Aromatic C5-C35	mg/kg	DETS 072*				< 0.1
TPH Ali/Aro	mg/kg	DETS 072*				< 0.1

		Lab No.	116595	116596	116597	116598
		Sample Ref	WS08	WS09	WS09	WS10
		Depth	0.70	0.50	1.00	1.50
		Other Ref				
Test	Units	Sample Type DETSxx	J	J	D	D
Acenaphthene	mg/kg	DETS 050	< 0.1	< 0.1	0.4	0.0
•	mg/kg	DETS 050 DETS 050	< 0.1 < 0.1	< 0.1 < 0.1	0.4	0.9 0.4
Acenapthylene Anthracene	mg/kg	DETS 050	< 0.1 0.2	< 0.1 < 0.1	0.2	0.4 1.2
Benzo(a)anthracene	mg/kg	DETS 050	1.3	< 0.1	2.3	2.0
Benzo(a)pyrene	mg/kg	DETS 050	0.1	< 0.1	2.3	2.0 1.7
Benzo(b)fluoranthene	mg/kg	DETS 050	0.1	< 0.1	2.7	3.3
Benzo(k)fluoranthene	mg/kg	DETS 050	0.2	< 0.1	2.1	1.0
Benzo(g,h,i)perylene	mg/kg	DETS 050	0.0	< 0.1	1.7	1.3
Chrysene	mg/kg	DETS 050	1.2	< 0.1	1.6	1.5
Dibenzo(a,h)anthracene	mg/kg	DETS 050	< 0.1	< 0.1	7.3	4.4
Fluoranthene	mg/kg	DETS 050	0.4	< 0.1	2.5	3.0
Fluorene	mg/kg	DETS 050	0.1	< 0.1	0.5	0.9
Indeno(1,2,3-c,d)pyrene	mg/kg	DETS 050	< 0.1	< 0.1	2.5	1.7
Napthalene	mg/kg	DETS 050	0.3	0.3	0.4	0.7
Phenanthrene	mg/kg	DETS 050	0.2	< 0.1	2.0	2.7
Pyrene	mg/kg	DETS 050	0.5	< 0.1	2.0	2.4
PAH	mg/kg	DETS 050	5.1	< 5.0	31	29
Benzene	mg/kg	DETS 062#				< 0.01
Ethylbenzene	mg/kg	DETS 062#				< 0.01
Toluene	mg/kg	DETS 062#				< 0.01
Xylene	mg/kg	DETS 062#				< 0.01
Phenol - Monohydric	mg/kg	DETS 067#				
PCB	mg/kg	DETS 052*				< 0.01
2,4,4'-Trichlorobiphenyl PCB 28	mg/kg	DETS 052*				< 0.01
2,2',5,5'-Tetrachlorobiphenyl PCB 52	mg/kg	DETS 052*				< 0.01
2,2',4,5,5'-Pentachlorobiphenyl PCB 101	mg/kg	DETS 052*				< 0.01
2,3',4,4',5-Pentachlorobiphenyl PCB 118	mg/kg	DETS 052*				< 0.01
2,2',4,4',5,5'-Hexachlorobiphenyl PCB 153	mg/kg	DETS 052*				< 0.01
2,2',3,4,4',5'-Hexachlorobiphenyl PCB 138	mg/kg	DETS 052*				< 0.01
2,2',3,4,4',5,5'-Heptachlorobiphenyl PCB 180	mg/kg	DETS 052*				< 0.01
Total VOC's	mg/kg	DETS 068*				< 0.01
1,2-dichloropropane	mg/kg	DETS 068*				< 0.01
Dibromomethane	mg/kg	DETS 068*				< 0.01
Bromodichloromethane	mg/kg	DETS 068*				< 0.01
cis-1,3-dichloropropene	mg/kg	DETS 068*				< 0.01
Toluene	mg/kg	DETS 068*				< 0.01
trans-1,3-dichloropropene	mg/kg	DETS 068*				< 0.01
1,1,2-trichloroethane	mg/kg	DETS 068*				< 0.01
Tetrachloroethylene	mg/kg	DETS 068*				< 0.01
1,3-dichloropropane	mg/kg	DETS 068*				< 0.01
Dibromochloromethane	mg/kg	DETS 068*				< 0.01
1,2-dibromoethane	mg/kg	DETS 068*				< 0.01
Chlorobenzene	mg/kg	DETS 068*				< 0.01
Ethylbenzene+1,1,1,2-tetrachloroethane	mg/kg	DETS 068*				< 0.01
m+p-Xylene	mg/kg	DETS 068*				< 0.01

TestUnitso-Xylenemg/kgStyrenemg/kgBromoformmg/kgIsopropylbenzenemg/kgBromobenzenemg/kg1,2,3-trichloropropanemg/kgn-propylbenzenemg/kg2-chlorotoluenemg/kg1,3,5-trimethylbenzenemg/kg	Lab No.	116595	116596	116597	116598
o-Xylenemg/kgStyrenemg/kgBromoformmg/kgIsopropylbenzenemg/kgBromobenzenemg/kg1,2,3-trichloropropanemg/kgn-propylbenzenemg/kg2-chlorotoluenemg/kg	Sample Ref	WS08	WS09	WS09	WS10
o-Xylenemg/kgStyrenemg/kgBromoformmg/kgIsopropylbenzenemg/kgBromobenzenemg/kg1,2,3-trichloropropanemg/kgn-propylbenzenemg/kg2-chlorotoluenemg/kg	Depth	0.70	0.50	1.00	1.50
o-Xylenemg/kgStyrenemg/kgBromoformmg/kgIsopropylbenzenemg/kgBromobenzenemg/kg1,2,3-trichloropropanemg/kgn-propylbenzenemg/kg2-chlorotoluenemg/kg	Other Ref				
o-Xylenemg/kgStyrenemg/kgBromoformmg/kgIsopropylbenzenemg/kgBromobenzenemg/kg1,2,3-trichloropropanemg/kgn-propylbenzenemg/kg2-chlorotoluenemg/kg	Sample Type	J	J	D	D
Styrenemg/kgBromoformmg/kgIsopropylbenzenemg/kgBromobenzenemg/kg1,2,3-trichloropropanemg/kgn-propylbenzenemg/kg2-chlorotoluenemg/kg	DETSxx				
Bromoformmg/kgIsopropylbenzenemg/kgBromobenzenemg/kg1,2,3-trichloropropanemg/kgn-propylbenzenemg/kg2-chlorotoluenemg/kg	DETS 068*				< 0.01
Isopropylbenzenemg/kgBromobenzenemg/kg1,2,3-trichloropropanemg/kgn-propylbenzenemg/kg2-chlorotoluenemg/kg	DETS 068*				< 0.01
Bromobenzenemg/kg1,2,3-trichloropropanemg/kgn-propylbenzenemg/kg2-chlorotoluenemg/kg	DETS 068*				< 0.01
1,2,3-trichloropropanemg/kgn-propylbenzenemg/kg2-chlorotoluenemg/kg	DETS 068*				< 0.01
n-propylbenzene mg/kg 2-chlorotoluene mg/kg	DETS 068*				< 0.01
2-chlorotoluene mg/kg	DETS 068*				< 0.01
5.5	DETS 068*				< 0.01
1.3.5-trimethylbenzene mg/kg	DETS 068*				< 0.01
	DETS 068*				< 0.01
4-chlorotoluene mg/kg	DETS 068*				< 0.01
Tert-butylbenzene mg/kg	DETS 068*				< 0.01
1,2,4-trimethylbenzene mg/kg	DETS 068*				< 0.01
sec-butylbenzene mg/kg	DETS 068*				< 0.01
1,3-dichlorobenzene+p-isopropyltoluene mg/kg	DETS 068*				< 0.01
1,4-dichlorobenzene mg/kg	DETS 068*				< 0.01
n-butylbenzene mg/kg	DETS 068*				< 0.01
1,2-dichlorobenzene mg/kg	DETS 068*				< 0.01
1,2-dibromo-3-chloropropane mg/kg	DETS 068*				< 0.01
1,2,4-trichlorobenzene mg/kg	DETS 068*				< 0.01
Hexachlorobutadiene mg/kg	DETS 068*				< 0.01
Naphthalene mg/kg	DETS 068*				< 0.01
1,2,3-trichlorobenzene mg/kg	DETS 068*				< 0.01
Trichloroethylene mg/kg	DETS 068*				< 0.01
Methylene Chloride mg/kg	DETS 068*				< 0.01
1,1 Dichloroethylene mg/kg	DETS 068*				< 0.01
1,2-dichloroethane mg/kg	DETS 068*				< 0.01
Benzene mg/kg	DETS 068*				< 0.01
Carbon tetrachloride + 1,1-dichloropropene mg/kg	DETS 068*				< 0.01
1,1,1-trichloroethane mg/kg	DETS 068*				< 0.01
Chloroform mg/kg	DETS 068*				< 0.01
Bromochloromethane mg/kg	DETS 068*				< 0.01
2,2-dichlororopane+1,2-dichloroethylene mg/kg	DETS 068*				< 0.01
1,1-dichloroethane mg/kg	DETS 068*				< 0.01
Trans-1,2-dichloroethylene mg/kg	DETS 068*				< 0.01

		Lab No.	116599	116600	116601	116602
		Sample Ref	WS10	WS11	WS11	WS12
		Depth	2.70	0.50	1.50	0.50
		Other Ref				
		Sample Type	D	D	D	J
Test	Units	DETSxx				
Arsenic	mg/kg	DETS 042#	7	8	5	8
Cadmium	mg/kg	DETS 042	0.6	0.7	0.5	0.7
Chromium	mg/kg	DETS 042	21	22	17	16
Copper	mg/kg	DETS 042	20	29	14	24
Lead	mg/kg	DETS 042	17	24	19	31
Mercury	mg/kg	DETS 081*	< 0.3	< 0.3	< 0.3	< 0.3
Nickel	mg/kg	DETS 042	20	26	19	20
Selenium	mg/kg	DETS 042	< 0.3	< 0.3	< 0.3	0.4
Zinc	mg/kg	DETS 042#	36	38	34	39
Boron (water soluble)	mg/kg	DETS 020#	0.8	1.1	1.1	1.0
Cyanide free	mg/kg	DETS 067#	< 0.1	< 0.1		
pH		DETS 008#	8.3	7.9		
Aliphatic C5-C6	mg/kg	DETS 072*		< 0.01		
Aliphatic C6-C8	mg/kg	DETS 072*		< 0.01		
Aliphatic C8-C10	mg/kg	DETS 072*		< 0.01		
Aliphatic C10-C12	mg/kg	DETS 072*		< 0.1		
Aliphatic C12-C16	mg/kg	DETS 072*		< 0.1		
Aliphatic C16-C21	mg/kg	DETS 072*		< 0.1		
Aliphatic C21-C35	mg/kg	DETS 072*		< 0.1		
Aromatic C5-C7	mg/kg	DETS 072*		< 0.01		
Aromatic C7-C8	mg/kg	DETS 072*		< 0.01		
Aromatic C8-C10	mg/kg	DETS 072*		< 0.01		
Aromatic C10-C12	mg/kg	DETS 072*		< 0.1		
Aromatic C12-C16	mg/kg	DETS 072*		< 0.1		
Aromatic C16-C21	mg/kg	DETS 072*		< 0.1		
Aromatic C21-C35	mg/kg	DETS 072*		< 0.1		
Aliphatic C5-C35	mg/kg	DETS 072*		< 0.1		
Aromatic C5-C35	mg/kg	DETS 072*		< 0.1		
TPH Ali/Aro	mg/kg	DETS 072*		< 0.1		

		Lab No.	116599	116600	116601	116602
		Sample Ref	WS10	WS11	WS11	WS12
		Depth	2.70	0.50	1.50	0.50
		Other Ref	_	_	-	
		Sample Type	D	D	D	J
Test	Units	DETSxx				
Acenaphthene	mg/kg	DETS 050	0.1	< 0.1	0.3	0.2
Acenapthylene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Anthracene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)anthracene	mg/kg	DETS 050	0.4	0.7	0.5	0.5
Benzo(a)pyrene	mg/kg	DETS 050	0.7	1.2	0.9	1.2
Benzo(b)fluoranthene	mg/kg	DETS 050	0.6	0.9	< 0.1	1.3
Benzo(k)fluoranthene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(g,h,i)perylene	mg/kg	DETS 050	0.2	0.4	0.3	0.5
Chrysene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Dibenzo(a,h)anthracene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Fluoranthene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	DETS 050	0.2	0.7	1.0	0.8
Napthalene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Pyrene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
РАН	mg/kg	DETS 050	< 5.0	< 5.0	< 5.0	< 5.0
Benzene	mg/kg	DETS 062#		< 0.01		
Ethylbenzene	mg/kg	DETS 062#		< 0.01		
Toluene	mg/kg	DETS 062#		< 0.01		
Xylene	mg/kg	DETS 062#		< 0.01		
Phenol - Monohydric	mg/kg	DETS 067#			< 0.3	< 0.3
PCB	mg/kg	DETS 052*		< 0.01		
2,4,4'-Trichlorobiphenyl PCB 28	mg/kg	DETS 052*		< 0.01		
2,2',5,5'-Tetrachlorobiphenyl PCB 52	mg/kg	DETS 052*		< 0.01		
2,2',4,5,5'-Pentachlorobiphenyl PCB 101	mg/kg	DETS 052*		< 0.01		
2,3',4,4',5-Pentachlorobiphenyl PCB 118	mg/kg	DETS 052*		< 0.01		
2,2',4,4',5,5'-Hexachlorobiphenyl PCB 153	mg/kg	DETS 052*		< 0.01		
2,2',3,4,4',5'-Hexachlorobiphenyl PCB 138	mg/kg	DETS 052*		< 0.01		
2,2',3,4,4',5,5'-Heptachlorobiphenyl PCB 180	mg/kg	DETS 052*		< 0.01		
Total VOC's	mg/kg	DETS 068*		< 0.01		
1,2-dichloropropane	mg/kg	DETS 068*		< 0.01		
Dibromomethane	mg/kg	DETS 068*		< 0.01		
Bromodichloromethane	mg/kg	DETS 068*		< 0.01		
cis-1,3-dichloropropene	mg/kg	DETS 068*		< 0.01		
Toluene	mg/kg	DETS 068*		< 0.01		
trans-1,3-dichloropropene	mg/kg	DETS 068*		< 0.01		
1,1,2-trichloroethane	mg/kg	DETS 068*		< 0.01		
Tetrachloroethylene	mg/kg	DETS 068*		< 0.01		
1,3-dichloropropane	mg/kg	DETS 068*		< 0.01		
Dibromochloromethane	mg/kg	DETS 068*		< 0.01		
1,2-dibromoethane	mg/kg	DETS 068*		< 0.01		
Chlorobenzene	mg/kg	DETS 068*		< 0.01		
Ethylbenzene+1,1,1,2-tetrachloroethane	mg/kg	DETS 068*		< 0.01		
m+p-Xylene	mg/kg	DETS 068*		< 0.01		

Sample Ref WS10 WS11 WS11			Lab No.	116599	116600	116601	116602
Other Ref Sample Type D D D J Test Units DETSxx o-Xylene mg/kg DETS 068* < 0.01 Styrena mg/kg DETS 068* < 0.01 Bromotorm mg/kg DETS 068* < 0.01 Bromotorma mg/kg DETS 068* < 0.01 Loptopthenzene mg/kg DETS 068* < 0.01 1.2.3-trichtoropropane mg/kg DETS 068* < 0.01 2-chlorotoluene mg/kg DETS 068* < 0.01 1.3.5-trimethybenzene mg/kg DETS 068* < 0.01 1.3.5-trimethybenzene mg/kg DETS 068* < 0.01 1.3.5-trimethybenzene mg/kg DETS 068* < 0.01 1.2.4-trimethybenzene mg/kg DETS 068* < 0.01 1.2.4-trimethybenzene mg/kg DETS 068* < 0.01 1.2.4-trimethybenzene mg/kg DETS 068* < 0.01 1.2.4-trinethybenzene mg/kg DETS 068*			Sample Ref	WS10	WS11	WS11	WS12
Sample Type D D D J Test Units DETSx o-Xjene mg/kg DETS 068' < 0.01 Bromolorm mg/kg DETS 068' < 0.01 Bromolorzene mg/kg DETS 068' < 0.01 1,2,3-trichloropropane mg/kg DETS 068' < 0.01 1,2,3-trichloropropane mg/kg DETS 068' < 0.01 <t< th=""><th></th><th></th><th>Depth</th><th>2.70</th><th>0.50</th><th>1.50</th><th>0.50</th></t<>			Depth	2.70	0.50	1.50	0.50
Test Units DETSX* o-Xylene mg/kg DETS 068* < 0.01 Styrene mg/kg DETS 068* < 0.01 Bromoform mg/kg DETS 068* < 0.01 Isopropylbenzene mg/kg DETS 068* < 0.01 Bromoform mg/kg DETS 068* < 0.01 1,2.3-trichthoropropane mg/kg DETS 068* < 0.01 7.2-trichthoropropane mg/kg DETS 068* < 0.01 2-chlorotoluene mg/kg DETS 068* < 0.01 2-chlorotoluene mg/kg DETS 068* < 0.01 1.3-trimthylbenzene mg/kg DETS 068* < 0.01 1.2.4-trimthylbenzene mg/kg DETS 068* < 0.01 1.2.4-trinthylbenzene mg/kg DETS 068* < 0.01 1.3-dichlorobenzene mg/kg DETS 068* < 0.01 1.4-dichlorobenzene mg/kg DETS 068* < 0.01 1.4-dichlorobenzene mg/kg DETS 068* < 0.01 1.2-dichlorobenzene			Other Ref				
o-Xylene mg/kg DETS 068* < 0.01 Styrene mg/kg DETS 068* < 0.01 Bromotorm mg/kg DETS 068* < 0.01 Bromotorm mg/kg DETS 068* < 0.01 Bromotenzene mg/kg DETS 068* < 0.01 1,2,3-trichiloropropane mg/kg DETS 068* < 0.01 2-chlorotoluene mg/kg DETS 068* < 0.01 1,3.5-trimethylbenzene mg/kg DETS 068* < 0.01 2-chlorotoluene mg/kg DETS 068* < 0.01 1,3.5-trimethylbenzene mg/kg DETS 068* < 0.01 1,2.4-trimethylbenzene mg/kg DETS 068* < 0.01 1,2.4-trimethylbenzene mg/kg DETS 068* < 0.01 1,2.4-trimethylbenzene mg/kg DETS 068* < 0.01 1,2-dichlorobenzene mg/kg DETS 068* < 0.01 1,2-dichlorobenzene mg/kg DETS 068* < 0.01 1,2-dichlorobenzene mg/kg DETS 068* < 0.01			Sample Type	D	D	D	J
Styrene mg/kg DETS 068* < 0.01	Test	Units	DETSxx				
Bromotorm mg/kg DETS 068* < 0.01 Isopropylbenzene mg/kg DETS 068* < 0.01	o-Xylene	mg/kg	DETS 068*		< 0.01		
Isopropylbenzene mg/kg DETS 068* < 0.01 Bromobenzene mg/kg DETS 068* < 0.01	Styrene	mg/kg	DETS 068*		< 0.01		
Bromobenzene mg/kg DETS 068* < 0.01 1,2,3-trichloropropane mg/kg DETS 068* < 0.01	Bromoform	mg/kg	DETS 068*		< 0.01		
1,2,3-trichloropropane mg/kg DETS 068* < 0.01	Isopropylbenzene	mg/kg	DETS 068*		< 0.01		
n-propylbenzene mg/kg DETS 068* < 0.01 2-chlorotoluene mg/kg DETS 068* < 0.01	Bromobenzene	mg/kg	DETS 068*		< 0.01		
2-chlorotoluene mg/kg DETS 068* < 0.01 1,3,5-trimethylbenzene mg/kg DETS 068* < 0.01	1,2,3-trichloropropane	mg/kg	DETS 068*		< 0.01		
1,3,5-trimethylbenzene mg/kg DETS 068* < 0.01	n-propylbenzene	mg/kg	DETS 068*		< 0.01		
4-chlorotoluene mg/kg DETS 068* < 0.01 Tert-butylbenzene mg/kg DETS 068* < 0.01	2-chlorotoluene	mg/kg	DETS 068*		< 0.01		
Tert-butylbenzene mg/kg DETS 068* < 0.01 1,2,4-trimethylbenzene mg/kg DETS 068* < 0.01	1,3,5-trimethylbenzene	mg/kg	DETS 068*		< 0.01		
1.2.4-trimethylbenzene mg/kg DETS 068* < 0.01	4-chlorotoluene	mg/kg	DETS 068*		< 0.01		
sec-butylbenzene mg/kg DETS 068* < 0.01 1,3-dichlorobenzene+p-isopropyltoluene mg/kg DETS 068* < 0.01	Tert-butylbenzene	mg/kg	DETS 068*		< 0.01		
1.3-dichlorobenzene+p-isopropyltoluene mg/kg DETS 068* < 0.01 1.4-dichlorobenzene mg/kg DETS 068* < 0.01	1,2,4-trimethylbenzene	mg/kg	DETS 068*		< 0.01		
1,4-dichlorobenzene mg/kg DETS 068* < 0.01	sec-butylbenzene	mg/kg	DETS 068*		< 0.01		
n-butylbenzene mg/kg DETS 068* < 0.01 1,2-dichlorobenzene mg/kg DETS 068* < 0.01	1,3-dichlorobenzene+p-isopropyltoluene	mg/kg	DETS 068*		< 0.01		
1,2-dichlorobenzene mg/kg DETS 068* < 0.01	1,4-dichlorobenzene	mg/kg	DETS 068*		< 0.01		
1,2-dibromo-3-chloropropane mg/kg DETS 068* < 0.01	n-butylbenzene	mg/kg	DETS 068*		< 0.01		
1,2,4-trichlorobenzene mg/kg DETS 068* < 0.01	1,2-dichlorobenzene	mg/kg	DETS 068*		< 0.01		
Hexachlorobutadiene mg/kg DETS 068* < 0.01 Naphthalene mg/kg DETS 068* < 0.01	1,2-dibromo-3-chloropropane	mg/kg	DETS 068*		< 0.01		
Naphthalene mg/kg DETS 068* < 0.01 1,2,3-trichlorobenzene mg/kg DETS 068* < 0.01	1,2,4-trichlorobenzene	mg/kg	DETS 068*		< 0.01		
1,2,3-trichlorobenzene mg/kg DETS 068* < 0.01	Hexachlorobutadiene	mg/kg	DETS 068*		< 0.01		
Trichloroethylene mg/kg DETS 068* < 0.01	Naphthalene	mg/kg	DETS 068*		< 0.01		
Methylene Chloride mg/kg DETS 068* < 0.01 1,1 Dichloroethylene mg/kg DETS 068* < 0.01	1,2,3-trichlorobenzene	mg/kg	DETS 068*		< 0.01		
1,1 Dichloroethylene mg/kg DETS 068* < 0.01	Trichloroethylene	mg/kg	DETS 068*		< 0.01		
1,2-dichloroethane mg/kg DETS 068* < 0.01	Methylene Chloride	mg/kg	DETS 068*		< 0.01		
Benzene mg/kg DETS 068* < 0.01 Carbon tetrachloride + 1,1-dichloropropene mg/kg DETS 068* < 0.01	1,1 Dichloroethylene	mg/kg	DETS 068*		< 0.01		
Carbon tetrachloride + 1,1-dichloropropene mg/kg DETS 068* < 0.01 1,1,1-trichloroethane mg/kg DETS 068* < 0.01	1,2-dichloroethane	mg/kg	DETS 068*		< 0.01		
1,1,1-trichloroethane mg/kg DETS 068* < 0.01	Benzene	mg/kg	DETS 068*		< 0.01		
Chloroform mg/kg DETS 068* < 0.01 Bromochloromethane mg/kg DETS 068* < 0.01	Carbon tetrachloride + 1,1-dichloropropene	mg/kg	DETS 068*		< 0.01		
Chloroform mg/kg DETS 068* < 0.01 Bromochloromethane mg/kg DETS 068* < 0.01	1,1,1-trichloroethane	mg/kg	DETS 068*		< 0.01		
2,2-dichlororopane+1,2-dichloroethylene mg/kg DETS 068* < 0.01 1,1-dichloroethane mg/kg DETS 068* < 0.01	Chloroform		DETS 068*		< 0.01		
1,1-dichloroethane mg/kg DETS 068* < 0.01	Bromochloromethane	mg/kg	DETS 068*		< 0.01		
1,1-dichloroethane mg/kg DETS 068* < 0.01	2,2-dichlororopane+1,2-dichloroethylene						
			DETS 068*		< 0.01		
	Trans-1,2-dichloroethylene						

		Lab No.	116603	116604	116605	116606
		Sample Ref	WS12	WS13	WS15	WS15
		Depth	1.00	0.50	0.50	2.00
		Other Ref				
		Sample Type	D	D	D	D
Test	Units	DETSxx				
Arsenic	mg/kg	DETS 042#	7	5	6	4
Cadmium	mg/kg	DETS 042	0.6	0.5	0.7	0.5
Chromium	mg/kg	DETS 042	15	17	17	15
Copper	mg/kg	DETS 042	19	19	20	10
Lead	mg/kg	DETS 042	25	15	28	16
Mercury	mg/kg	DETS 081*	< 0.3	< 0.3	< 0.3	< 0.3
Nickel	mg/kg	DETS 042	19	21	21	15
Selenium	mg/kg	DETS 042	< 0.3	< 0.3	< 0.3	< 0.3
Zinc	mg/kg	DETS 042#	42	35	43	31
Boron (water soluble)	mg/kg	DETS 020#	0.8	1.1	1.0	1.3
Cyanide free	mg/kg	DETS 067#				
pH		DETS 008#				
Aliphatic C5-C6	mg/kg	DETS 072*	< 0.01	< 0.01	< 0.01	
Aliphatic C6-C8	mg/kg	DETS 072*	< 0.01	< 0.01	< 0.01	
Aliphatic C8-C10	mg/kg	DETS 072*	< 0.01	< 0.01	< 0.01	
Aliphatic C10-C12	mg/kg	DETS 072*	< 0.1	< 0.1	< 0.1	
Aliphatic C12-C16	mg/kg	DETS 072*	< 0.1	< 0.1	< 0.1	
Aliphatic C16-C21	mg/kg	DETS 072*	< 0.1	< 0.1	< 0.1	
Aliphatic C21-C35	mg/kg	DETS 072*	< 0.1	< 0.1	< 0.1	
Aromatic C5-C7	mg/kg	DETS 072*	< 0.01	< 0.01	< 0.01	
Aromatic C7-C8	mg/kg	DETS 072*	< 0.01	< 0.01	< 0.01	
Aromatic C8-C10	mg/kg	DETS 072*	< 0.01	< 0.01	< 0.01	
Aromatic C10-C12	mg/kg	DETS 072*	< 0.1	< 0.1	< 0.1	
Aromatic C12-C16	mg/kg	DETS 072*	< 0.1	< 0.1	< 0.1	
Aromatic C16-C21	mg/kg	DETS 072*	< 0.1	< 0.1	< 0.1	
Aromatic C21-C35	mg/kg	DETS 072*	< 0.1	< 0.1	< 0.1	
Aliphatic C5-C35	mg/kg	DETS 072*	< 0.1	< 0.1	< 0.1	
Aromatic C5-C35	mg/kg	DETS 072*	< 0.1	< 0.1	< 0.1	
TPH Ali/Aro	mg/kg	DETS 072*	< 0.1	< 0.1	< 0.1	

Sample Fiel WS12 WS13 WS15			Lab No.	116603	116604	116605	116606
Diter Area Diter Area D D D D D D Acenaphthrone mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 Acenaphthrone mg/kg DETS 050 < 0.1 < 0.01 < 0.01 < 0.01 Anthracene mg/kg DETS 050 < 0.1 < 0.01 < 0.01 < 0.01 Benzo(a)prene mg/kg DETS 050 < 0.1 < 0.01 < 0.01 < 0.01 Benzo(a)prene mg/kg DETS 050 < 0.1 < 0.01 < 0.01 < 0.01 Benzo(a)prene mg/kg DETS 050 < 0.1 < 0.01 < 0.01 < 0.01 Benzo(a)prene mg/kg DETS 050 < 0.1 < 0.01 < 0.01 < 0.01 < 0.01 Benzo(a)prene mg/kg DETS 050 < 0.1 < 0.01 < 0.01 < 0.01 < 0.01 Bunzo bindendin mg/kg DETS 050 < 0.1 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01			Sample Ref	WS12	WS13	WS15	WS15
TestUnitsDETS 620CDDDAcenaphthenemg/kgDETS 650<.0.1<.0.1<.0.1<.0.1<.0.1<.0.1Acenaphthenemg/kgDETS 650<.0.1<.0.1<.0.1<.0.1<.0.1<.0.1Benzo(a)anthracenemg/kgDETS 650<.0.1<.0.1<.0.1<.0.1<.0.1<.0.1Benzo(a)anthracenemg/kgDETS 650<.0.1<.0.1<.0.1<.0.1<.0.1Benzo(a)(anthracenemg/kgDETS 650<.0.1<.0.1<.0.1<.0.1Benzo(a)(anthracenemg/kgDETS 650<.0.1<.0.1<.0.1<.0.1Benzo(a)(anthracenemg/kgDETS 650<.0.1<.0.1<.0.1<.0.1Diverso(a)(a)(anthracenemg/kgDETS 650<.0.1<.0.1<.0.1<.0.1Fluoranthenemg/kgDETS 650<.0.1<.0.1<.0.1<.0.1Fluoranthenemg/kgDETS 650<.0.1<.0.1<.0.1<.0.1Fluoranthenemg/kgDETS 650<.0.1<.0.1<.0.1<.0.1Fluoranthenemg/kgDETS 650<.0.1<.0.1<.0.1<.0.1Fluoranthenemg/kgDETS 650<.0.1<.0.1<.0.1<.0.1Fluoranthenemg/kgDETS 650<.0.1<.0.1<.0.1<.0.1Fluoranthenemg/kgDETS 650<.0.1<.0.1<.0.1<.0.1Fluoranthenemg/kgDETS			•	1.00	0.50	0.50	2.00
Test Units DETSo: Acenaphthene mg/kg DETS 050 < 0.1				5	-	-	_
Aceraphthene mg/kg DETS 050 < 0.1	Test	Unite		D	D	D	D
Acenaptiylene mg/kg DETS 050 < 0.1				0.4	0.4	0.0	
Anthracene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 Benzo(a)anthracene mg/kg DETS 050 0.4 0.07 0.66 0.8 Benzo(a)privene mg/kg DETS 050 0.11 1.11 1.3 2.1 Benzo(a)/juoranthene mg/kg DETS 050 0.01 < 0.1							
Benzo(a)anthracene mg/kg DETS 050 0.4 0.7 0.6 0.8 Benzo(a)apvene mg/kg DETS 050 1.1 1.1 1.3 2.1 Benzo(b)/luoranthene mg/kg DETS 050 0.1 0.1 0.11 0.1 Benzo(b/luoranthene mg/kg DETS 050 0.2 0.3 0.4 0.7 Chrysene mg/kg DETS 050 0.1 0.1 0.1 0.1 Ibuezo(g/h,i)perylene mg/kg DETS 050 0.1 0.1 0.1 0.1 0.1 Fluoranthene mg/kg DETS 050 0.1 0.1 0.1 0.1 0.1 Fluoranthene mg/kg DETS 050 0.1 0.1 0.1 0.1 0.1 Preme mg/kg DETS 050 0.1 0.1 0.1 0.1 0.1 Pyrene mg/kg DETS 050 0.1 0.1 0.1 0.1 Pyrene mg/kg DETS 052* 0.1 0.01 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Benzo(a)pyrene mg/kg DETS 050 1.1 1.1 1.3 2.1 Benzo(h)uoranthene mg/kg DETS 050 <.0.1							
Benzo(b)luoranthene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 Benzo(b,l)puoranthene mg/kg DETS 050 < 0.1							
Benzo(k)fluoranthene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 Benzo(k)fluoranthene mg/kg DETS 050 0.2 0.3 0.4 0.7 Diberzo(a,h)anthracene mg/kg DETS 050 < 0.1							
Benzolg,hilperylene mg/kg DETS 050 0.2 0.3 0.4 0.7 Chrysene mg/kg DETS 050 < 0.1							
Ohysene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 Dibenzo(a,h)anthracene mg/kg DETS 050 < 0.1							
Dibenzo(a,h)anthracene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 Fluoranthene mg/kg DETS 050 < 0.1							
Fluoranthene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 Fluorene mg/kg DETS 050 < 0.1	-						
Fluorene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 Indeno11,2,3-c,dipyrene mg/kg DETS 050 0.6 0.5 0.9 1.3 Napthalene mg/kg DETS 050 < 0.1							
Indeno(1,2,3-c,d)pyrene mg/kg DETS 050 0.6 0.5 0.9 1.3 Naphtalene mg/kg DETS 050 <.0.1							
Napthalene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 Phenanthrene mg/kg DETS 050 < 0.1							
Phenanthrene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 Pyrene mg/kg DETS 050 < 0.1							
Pyrene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 PAH mg/kg DETS 050 < 5.0	-						
PAH mg/kg DETS 050 < 5.0 < 5.0 < 5.0 5.0 Benzene mg/kg DETS 062# < 0.01							
Benzene mg/kg DETS 062# < 0.01 < 0.01 Ethylbenzene mg/kg DETS 062# < 0.01	-						
Ethylbenzene mg/kg DETS 062# < 0.01 < 0.01 < 0.01 Toluene mg/kg DETS 062# < 0.01							5.0
Toluene mg/kg DETS 062# < 0.01 < 0.01 < 0.01 Xylene mg/kg DETS 062# < 0.01							
Xylene mg/kg DETS 062# < 0.01 < 0.01 < 0.01 Phenol - Monohydric mg/kg DETS 067# < 0.3	-						
Phenol - Monohydric mg/kg DETS 067# < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.							
PCB mg/kg DETS 052* < 0.01 < 0.01 2,4,4*-Trichlorobiphenyl PCB 28 mg/kg DETS 052* < 0.01	-						
2.4.4'-Trichlorobiphenyl PCB 28mg/kgDETS 052*< 0.01< 0.01< 0.012.2',5,5'-Tetrachlorobiphenyl PCB 52mg/kgDETS 052*< 0.01							< 0.3
2.2',5,5'-Tetrachlorobiphenyl PCB 52 mg/kg DETS 052* < 0.01							
2.2', 4, 5, 5'-Pentachlorobiphenyl PCB 101 mg/kg DETS 052* < 0.01							
2.3',4,4',5-Pentachlorobiphenyl PCB 118 mg/kg DETS 052* < 0.01							
2.2', 4, 4', 5, 5'-Hexachlorobiphenyl PCB 153 mg/kg DETS 052* < 0.01							
2,2',3,4,4',5'-Hexachlorobiphenyl PCB 138 mg/kg DETS 052* < 0.01							
2,2',3,4,4',5,5'-Heptachlorobiphenyl PCB 180 mg/kg DETS 052* < 0.01							
Total VOC's mg/kg DETS 068* < 0.01 < 0.01 < 0.01 1,2-dichloropropane mg/kg DETS 068* < 0.01							
1,2-dichloropropanemg/kgDETS 068*< 0.01< 0.01< 0.01Dibromomethanemg/kgDETS 068*< 0.01							
Dibromomethane mg/kg DETS 068* < 0.01							
Bromodichloromethane mg/kg DETS 068* < 0.01 < 0.01 cis-1,3-dichloropropene mg/kg DETS 068* < 0.01							
cis-1,3-dichloropropene mg/kg DETS 068* < 0.01							
Toluene mg/kg DETS 068* < 0.01 < 0.01 trans-1,3-dichloropropene mg/kg DETS 068* < 0.01							
trans-1,3-dichloropropene mg/kg DETS 068* < 0.01							
1,1,2-trichloroethane mg/kg DETS 068* < 0.01							
Tetrachloroethylene mg/kg DETS 068* < 0.01 < 0.01 < 0.01 1,3-dichloropropane mg/kg DETS 068* < 0.01							
1,3-dichloropropane mg/kg DETS 068* < 0.01 < 0.01 < 0.01 Dibromochloromethane mg/kg DETS 068* < 0.01		mg/kg					
Dibromochloromethane mg/kg DETS 068* < 0.01 < 0.01 < 0.01 1,2-dibromoethane mg/kg DETS 068* < 0.01							
1,2-dibromoethane mg/kg DETS 068* < 0.01 < 0.01 < 0.01 Chlorobenzene mg/kg DETS 068* < 0.01							
Chlorobenzene mg/kg DETS 068* < 0.01 < 0.01 < 0.01 Ethylbenzene+1,1,1,2-tetrachloroethane mg/kg DETS 068* < 0.01							
Ethylbenzene+1,1,1,2-tetrachloroethane mg/kg DETS 068* < 0.01 < 0.01 < 0.01	•						
m+p-Xylene mg/kg DETS 068* < 0.01 < 0.01 < 0.01	-						
	m+p-Xylene	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	

		Lab No.	116603	116604	116605	116606
		Sample Ref	WS12	WS13	WS15	WS15
		Depth	1.00	0.50	0.50	2.00
		Other Ref				
		Sample Type	D	D	D	D
Test	Units	DETSxx				
o-Xylene	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	
Styrene	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	
Bromoform	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	
Isopropylbenzene	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	
Bromobenzene	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	
1,2,3-trichloropropane	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	
n-propylbenzene	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	
2-chlorotoluene	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	
1,3,5-trimethylbenzene	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	
4-chlorotoluene	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	
Tert-butylbenzene	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	
1,2,4-trimethylbenzene	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	
sec-butylbenzene	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	
1,3-dichlorobenzene+p-isopropyltoluene	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	
1,4-dichlorobenzene	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	
n-butylbenzene	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	
1,2-dichlorobenzene	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	
1,2-dibromo-3-chloropropane	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	
1,2,4-trichlorobenzene	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	
Hexachlorobutadiene	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	
Naphthalene	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	
1,2,3-trichlorobenzene	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	
Trichloroethylene	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	
Methylene Chloride	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	
1,1 Dichloroethylene	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	
1,2-dichloroethane	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	
Benzene	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	
Carbon tetrachloride + 1,1-dichloropropene	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	
1,1,1-trichloroethane	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	
Chloroform	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	
Bromochloromethane	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	
2,2-dichlororopane+1,2-dichloroethylene	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	
1,1-dichloroethane	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	
Trans-1,2-dichloroethylene	mg/kg	DETS 068*	< 0.01	< 0.01	< 0.01	

		Lab No.	116607	116608	116609	116610
		Sample Ref	WS16	WS17	WS17	TP5
		Depth	0.30	1.00	1.30	1.50
		Other Ref				
		Sample Type	J	D	D	J
Test	Units	DETSxx				
Arsenic	mg/kg	DETS 042#	9	7	6	
Cadmium	mg/kg	DETS 042	0.9	0.7	0.7	
Chromium	mg/kg	DETS 042	22	19	18	
Copper	mg/kg	DETS 042	32	18	20	
Lead	mg/kg	DETS 042	12	17	19	
Mercury	mg/kg	DETS 081*	< 0.3	< 0.3	< 0.3	
Nickel	mg/kg	DETS 042	38	23	25	
Selenium	mg/kg	DETS 042	< 0.3	< 0.3	< 0.3	
Zinc	mg/kg	DETS 042#	61	43	46	
Boron (water soluble)	mg/kg	DETS 020#	0.7	0.8	0.8	
Cyanide free	mg/kg	DETS 067#				
рН		DETS 008#				
Aliphatic C5-C6	mg/kg	DETS 072*	< 0.01			< 0.01
Aliphatic C6-C8	mg/kg	DETS 072*	< 0.01			< 0.01
Aliphatic C8-C10	mg/kg	DETS 072*	< 0.01			< 0.01
Aliphatic C10-C12	mg/kg	DETS 072*	< 0.1			< 0.1
Aliphatic C12-C16	mg/kg	DETS 072*	< 0.1			< 0.1
Aliphatic C16-C21	mg/kg	DETS 072*	< 0.1			< 0.1
Aliphatic C21-C35	mg/kg	DETS 072*	< 0.1			< 0.1
Aromatic C5-C7	mg/kg	DETS 072*	< 0.01			< 0.01
Aromatic C7-C8	mg/kg	DETS 072*	< 0.01			< 0.01
Aromatic C8-C10	mg/kg	DETS 072*	< 0.01			< 0.01
Aromatic C10-C12	mg/kg	DETS 072*	< 0.1			< 0.1
Aromatic C12-C16	mg/kg	DETS 072*	< 0.1			< 0.1
Aromatic C16-C21	mg/kg	DETS 072*	< 0.1			< 0.1
Aromatic C21-C35	mg/kg	DETS 072*	< 0.1			< 0.1
Aliphatic C5-C35	mg/kg	DETS 072*	< 0.1			< 0.1
Aromatic C5-C35	mg/kg	DETS 072*	< 0.1			< 0.1
TPH Ali/Aro	mg/kg	DETS 072*	< 0.1			< 0.1

		Lab No.	116607	116608	116609 WS17	116610 TP5
		Sample Ref	WS16	WS17	WS17	TP5
		Depth Other Ref	0.30	1.00	1.30	1.50
		Sample Type	I	D	D	
Toot	Units	DETSxx	J	D	D	J
Test			< 0.1	< 0.1	< 0.1	
Acenaphthene	mg/kg	DETS 050	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	
Acenapthylene Anthracene	mg/kg	DETS 050	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	
	mg/kg mg/kg	DETS 050 DETS 050	< 0.1 0.7	< 0.1 0.7	< 0.1 0.4	
Benzo(a)anthracene Benzo(a)pyrene	mg/kg	DETS 050	1.6	1.6	1.2	
Benzo(b)fluoranthene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	
				< 0.1 < 0.1		
Benzo(k)fluoranthene	mg/kg	DETS 050	< 0.1	< 0.1 0.6	< 0.1 0.3	
Benzo(g,h,i)perylene	mg/kg	DETS 050	0.6	0.6 < 0.1		
Chrysene	mg/kg	DETS 050	< 0.1		< 0.1	
Dibenzo(a,h)anthracene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	
Fluoranthene Fluorene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	
	mg/kg	DETS 050	0.1	< 0.1	< 0.1	
Indeno(1,2,3-c,d)pyrene	mg/kg	DETS 050	0.8	0.9	0.6	
Napthalene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	
Phenanthrene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	
Pyrene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	
PAH	mg/kg	DETS 050	< 5.0	< 5.0	< 5.0	0.04
Benzene	mg/kg	DETS 062#	< 0.01			< 0.01
Ethylbenzene	mg/kg	DETS 062#	< 0.01			< 0.01
Toluene	mg/kg	DETS 062#	< 0.01			< 0.01
Xylene	mg/kg	DETS 062#	< 0.01			< 0.01
Phenol - Monohydric	mg/kg	DETS 067#	< 0.3	< 0.3	< 0.3	
PCB	mg/kg	DETS 052*	< 0.01			< 0.01
2,4,4'-Trichlorobiphenyl PCB 28	mg/kg	DETS 052*	< 0.01			< 0.01
2,2',5,5'-Tetrachlorobiphenyl PCB 52	mg/kg	DETS 052*	< 0.01			< 0.01
2,2',4,5,5'-Pentachlorobiphenyl PCB 101	mg/kg	DETS 052*	< 0.01			< 0.01
2,3',4,4',5-Pentachlorobiphenyl PCB 118	mg/kg	DETS 052*	< 0.01			< 0.01
2,2',4,4',5,5'-Hexachlorobiphenyl PCB 153	mg/kg	DETS 052*	< 0.01			< 0.01
2,2',3,4,4',5'-Hexachlorobiphenyl PCB 138	mg/kg	DETS 052*	< 0.01			< 0.01
2,2',3,4,4',5,5'-Heptachlorobiphenyl PCB 180	mg/kg	DETS 052*	< 0.01			< 0.01
Total VOC's	mg/kg	DETS 068*	< 0.01			< 0.01
1,2-dichloropropane	mg/kg	DETS 068*	< 0.01			< 0.01
Dibromomethane	mg/kg	DETS 068*	< 0.01			< 0.01
Bromodichloromethane	mg/kg	DETS 068*	< 0.01			< 0.01
cis-1,3-dichloropropene	mg/kg	DETS 068*	< 0.01			< 0.01
Toluene	mg/kg	DETS 068*	< 0.01			< 0.01
trans-1,3-dichloropropene	mg/kg	DETS 068*	< 0.01			< 0.01
1,1,2-trichloroethane	mg/kg	DETS 068*	< 0.01			< 0.01
Tetrachloroethylene	mg/kg	DETS 068*	< 0.01			< 0.01
1,3-dichloropropane	mg/kg	DETS 068*	< 0.01			< 0.01
Dibromochloromethane	mg/kg	DETS 068*	< 0.01			< 0.01
1,2-dibromoethane	mg/kg	DETS 068*	< 0.01			< 0.01
Chlorobenzene	mg/kg	DETS 068*	< 0.01			< 0.01
Ethylbenzene+1,1,1,2-tetrachloroethane	mg/kg	DETS 068*	< 0.01			< 0.01
m+p-Xylene	mg/kg	DETS 068*	< 0.01			< 0.01

Sample Ref WS16 WS17 WS17 TP Depth 0.30 1.00 1.50 1.50 Sample Type J D D D 0 0 0.01 Test Units DETS 068* < 0.01 < < 0.01 < 0.01 Styrene mg/kg DETS 068* < 0.01 < < 0.01 < 0.01 Bromotorm mg/kg DETS 068* < 0.01 < < 0.01 < 0.01 Bromotorm mg/kg DETS 068* < 0.01 < < 0.01 < 0.01 1,2,3-trichloropropane mg/kg DETS 068* < 0.01 < < 0.01 < 0.01 2,-throchoulene mg/kg DETS 068* < 0.01 < < 0.01 < 0.01 1,3,5-trimethylbenzene mg/kg DETS 068* < 0.01 < < 0.01 < < 0.01 1,4-thriorophynane mg/kg DETS 068* < 0.01 < < 0.01 < < 0.01 1,2,4-thriorophylenzene mg/kg DETS 068* < 0.01 < < 0.01 < < 0.01			Lab No.	116607	116608	116609	116610
Other Ref Sample Type J D D J Test Units DETS Other 0-Xylene mg/kg DETS 068' < 0.01 < 0.01 Styrene mg/kg DETS 068' < 0.01 < 0.01 Bromotorm mg/kg DETS 068' < 0.01 < 0.01 Bromotorm mg/kg DETS 068' < 0.01 < 0.01 1,2,3-trichloropropane mg/kg DETS 068' < 0.01 < 0.01 2-chlorotoluene mg/kg DETS 068' < 0.01 < 0.01 1,3,5-trinethylbenzene mg/kg DETS 068' < 0.01 < 0.01 1,3,5-trinethylbenzene mg/kg DETS 068' < 0.01 < 0.01 1,3,4-trinethylbenzene mg/kg DETS 068' < 0.01 < 0.01 1,2,4-trinethylbenzene mg/kg DETS 068' < 0.01 < 0.01 1,3,4-trinethylbenzene mg/kg DETS 068' < 0.01 < 0.01 1,4-dichlorobenzene mg/kg DETS 06			Sample Ref	WS16	WS17	WS17	TP5
TestUnitsDefTsxxDDJTestUnitsDETS 086*< 0.01< 0.01Styrenemg/kgDETS 086*< 0.01< 0.01Bromohormmg/kgDETS 086*< 0.01< 0.01Isopropylbenzenemg/kgDETS 086*< 0.01< 0.01Isopropylbenzenemg/kgDETS 086*< 0.01< 0.011,2,3-trichloropropanemg/kgDETS 086*< 0.01< 0.011,2,3-trichloropropanemg/kgDETS 086*< 0.01< 0.011,3.5-trimethylbenzenemg/kgDETS 086*< 0.01< 0.011,3.5-trimethylbenzenemg/kgDETS 086*< 0.01< 0.011,3.5-trimethylbenzenemg/kgDETS 086*< 0.01< 0.011,3.4-trinothylbenzenemg/kgDETS 086*< 0.01< 0.011,2.4-trinethylbenzenemg/kgDETS 086*< 0.01< 0.011,2.4-trinethylbenzenemg/kgDETS 086*< 0.01< 0.011,2.4-trinethylbenzenemg/kgDETS 086*< 0.01< 0.011,2.4-trichlorobenzenemg/kgDETS 086*< 0.0			Depth	0.30	1.00	1.30	1.50
Test Units DETS xx o-Xylene mg/kg DETS 068* < 0.01 < 0.01 Styrene mg/kg DETS 068* < 0.01 < 0.01 Bromoform mg/kg DETS 068* < 0.01 < 0.01 Isopropybenzene mg/kg DETS 068* < 0.01 < 0.01 Bromoberzene mg/kg DETS 068* < 0.01 < 0.01 1,2,3-trichloropropane mg/kg DETS 068* < 0.01 < 0.01 2-chlorotoluene mg/kg DETS 068* < 0.01 < 0.01 2-chlorotoluene mg/kg DETS 068* < 0.01 < 0.01 1,3-trimethylbenzene mg/kg DETS 068* < 0.01 < 0.01 2-chlorotoluene mg/kg DETS 068* < 0.01 < 0.01 1,2-trimethylbenzene mg/kg DETS 068* < 0.01 < 0.01 1,2-dichlorobenzene+jrisopropyltoluene mg/kg DETS 068* < 0.01 < 0.01 1,3-dichlorobenzene mg/kg DETS 068* < 0.01 < 0.01<			Other Ref				
o-Xylene mg/kg DETS 068* < 0.01			Sample Type	J	D	D	J
Styrene mg/kg DETS 068* < 0.01	Test	Units	DETSxx				
Bromotorm mg/kg DETS 068* < 0.01 < 0.01 Isopropylbenzene mg/kg DETS 068* < 0.01	o-Xylene	mg/kg	DETS 068*	< 0.01			< 0.01
Isopropylbenzene mg/kg DETS 068* < 0.01 < 0.01 Bromobenzene mg/kg DETS 068* < 0.01	Styrene	mg/kg	DETS 068*	< 0.01			< 0.01
Brondbenzene mg/kg DETS 068* < 0.01 < 0.01 1,2,3-trichloropropane mg/kg DETS 068* < 0.01	Bromoform	mg/kg	DETS 068*	< 0.01			< 0.01
1,2,3-trichloropropane mg/kg DETS 068* < 0.01	lsopropylbenzene	mg/kg	DETS 068*	< 0.01			< 0.01
npropylbenzene mg/kg DETS 068* < 0.01 < 0.01 2-chlorotoluene mg/kg DETS 068* < 0.01	Bromobenzene	mg/kg	DETS 068*	< 0.01			< 0.01
2-chlorotoluene mg/kg DETS 068* < 0.01	1,2,3-trichloropropane	mg/kg	DETS 068*	< 0.01			< 0.01
1,3,5-trimethylbenzene mg/kg DETS 068* < 0.01	n-propylbenzene	mg/kg	DETS 068*	< 0.01			< 0.01
4-chlorotoluene mg/kg DETS 068* < 0.01	2-chlorotoluene	mg/kg	DETS 068*	< 0.01			< 0.01
Tert-butylbenzene mg/kg DETS 068* < 0.01 < 0.01 1,2,4-trimethylbenzene mg/kg DETS 068* < 0.01	1,3,5-trimethylbenzene	mg/kg	DETS 068*	< 0.01			< 0.01
1,2,4-trimethylbenzene mg/kg DETS 068* < 0.01	4-chlorotoluene	mg/kg	DETS 068*	< 0.01			< 0.01
sec-butylbenzene mg/kg DETS 068* < 0.01	Tert-butylbenzene	mg/kg	DETS 068*	< 0.01			< 0.01
1,3-dichlorobenzene+p-isopropyltoluene mg/kg DETS 068* < 0.01	1,2,4-trimethylbenzene	mg/kg	DETS 068*	< 0.01			< 0.01
1.4-dichlorobenzene mg/kg DETS 068* < 0.01	sec-butylbenzene	mg/kg	DETS 068*	< 0.01			< 0.01
no-butylbenzene mg/kg DETS 068* < 0.01 < 0.01 1,2-dichlorobenzene mg/kg DETS 068* < 0.01	1,3-dichlorobenzene+p-isopropyltoluene	mg/kg	DETS 068*	< 0.01			< 0.01
1,2-dichlorobenzene mg/kg DETS 068* < 0.01	1,4-dichlorobenzene	mg/kg	DETS 068*	< 0.01			< 0.01
1,2-dibromo-3-chloropropane mg/kg DETS 068* < 0.01	n-butylbenzene	mg/kg	DETS 068*	< 0.01			< 0.01
1,2,4-trichlorobenzene mg/kg DETS 068* < 0.01	1,2-dichlorobenzene	mg/kg	DETS 068*	< 0.01			< 0.01
Hexachlorobutadiene mg/kg DETS 068* < 0.01 < 0.01 Naphthalene mg/kg DETS 068* < 0.01	1,2-dibromo-3-chloropropane	mg/kg	DETS 068*	< 0.01			< 0.01
Naphthalene mg/kg DETS 068* < 0.01 < 0.01 1,2,3-trichlorobenzene mg/kg DETS 068* < 0.01	1,2,4-trichlorobenzene	mg/kg	DETS 068*	< 0.01			< 0.01
1,2,3-trichlorobenzene mg/kg DETS 068* < 0.01	Hexachlorobutadiene	mg/kg	DETS 068*	< 0.01			< 0.01
Trichloroethylene mg/kg DETS 068* < 0.01 < 0.01 Methylene Chloride mg/kg DETS 068* < 0.01	Naphthalene	mg/kg	DETS 068*	< 0.01			< 0.01
Methylene Chloride mg/kg DETS 068* < 0.01 < 0.01 1,1 Dichloroethylene mg/kg DETS 068* < 0.01	1,2,3-trichlorobenzene	mg/kg	DETS 068*	< 0.01			< 0.01
1,1 Dichloroethylene mg/kg DETS 068* < 0.01	Trichloroethylene	mg/kg	DETS 068*	< 0.01			< 0.01
1,2-dichloroethane mg/kg DETS 068* < 0.01	Methylene Chloride	mg/kg	DETS 068*	< 0.01			< 0.01
Benzene mg/kg DETS 068* < 0.01 < 0.01 Carbon tetrachloride + 1,1-dichloropropene mg/kg DETS 068* < 0.01	1,1 Dichloroethylene	mg/kg	DETS 068*	< 0.01			< 0.01
Carbon tetrachloride + 1,1-dichloropropene mg/kg DETS 068* < 0.01 < 0.01 1,1,1-trichloroethane mg/kg DETS 068* < 0.01	1,2-dichloroethane	mg/kg	DETS 068*	< 0.01			< 0.01
1,1,1-trichloroethane mg/kg DETS 068* < 0.01	Benzene	mg/kg	DETS 068*	< 0.01			< 0.01
Chloroform mg/kg DETS 068* < 0.01 < 0.01 Bromochloromethane mg/kg DETS 068* < 0.01	Carbon tetrachloride + 1,1-dichloropropene	mg/kg	DETS 068*	< 0.01			< 0.01
Bromochloromethane mg/kg DETS 068* < 0.01 < 0.01 2,2-dichlororopane+1,2-dichloroethylene mg/kg DETS 068* < 0.01	1,1,1-trichloroethane	mg/kg	DETS 068*	< 0.01			< 0.01
2,2-dichlororopane+1,2-dichloroethylene mg/kg DETS 068* < 0.01 < 0.01 1,1-dichloroethane mg/kg DETS 068* < 0.01	Chloroform	mg/kg	DETS 068*	< 0.01			< 0.01
2,2-dichlororopane+1,2-dichloroethylene mg/kg DETS 068* < 0.01 < 0.01 1,1-dichloroethane mg/kg DETS 068* < 0.01	Bromochloromethane		DETS 068*	< 0.01			< 0.01
1,1-dichloroethane mg/kg DETS 068* < 0.01 < 0.01	2,2-dichlororopane+1,2-dichloroethylene		DETS 068*	< 0.01			< 0.01
	1,1-dichloroethane		DETS 068*	< 0.01			< 0.01
	Trans-1,2-dichloroethylene	mg/kg	DETS 068*	< 0.01			< 0.01

Appendix A - Details of Analysis

Method details are shown only for those determinants listed in Annex A of the MCERTS standard. Anything not included on this list falls outside the scope of MCERTS. No Recovery Factors are used in the determination of results. Results reported assume 100% recovery Full method statements are available on request.

Method	Name of Parameter	<u>Units</u>	Limit of Detection	Sample Preparation	Sub-Contracted	<u>UKAS</u>	MCERTS
DETS 002	Organic Matter	%	0.01	Air Dried	No	Yes	No
DETS 003	Loss on Ignition	%	0.01	Air Dried	No	Yes	Yes
DETS 004	Total Sulphate	%	0.01	Air Dried	No	Yes	Yes
DETS 075	Total Sulphate	%	0.01	Air Dried	No	Yes	Yes
DETS 004	Water Soluble Sulphate	g/I	0.01	Air Dried	No	Yes	Yes
DETS 076	Water Soluble Sulphate	g/I	0.01	Air Dried	No	Yes	Yes
DETS 006	Chloride	mg/kg	0.01	Air Dried	No	Yes	Yes
DETS 008	рН	pH Units	0.10	Air Dried	No	Yes	Yes
DETS 042	Selenium	mg/kg	0.30	Air Dried	No	Yes	No
DETS 055	Ammonia	mg/kg	0.02	Air Dried	No	No	No
DETS 020	Boron (Water Soluble)	mg/kg	0.20	Air Dried	No	Yes	Yes
DETS 024	Sulphide	mg/kg	10.00	Air Dried	No	Yes	Yes
DETS 042	Antimony	mg/kg	1.00	Air Dried	No	No	No
DETS 042	Arsenic	mg/kg	1.00	Air Dried	No	Yes	Yes
DETS 042	Barium	mg/kg	1.00	Air Dried	No	No	No
DET S 042	Beryllium	mg/kg	1.00	Air Dried	No	No	No
DETS 042	Cadmium	mg/kg	0.20	Air Dried	No	Yes	No

Appendix A - Details of Analysis

Method details are shown only for those determinants listed in Annex A of the MCERTS standard. Anything not included on this list falls outside the scope of MCERTS. No Recovery Factors are used in the determination of results. Results reported assume 100% recovery Full method statements are available on request.

Method	Name of Parameter	<u>Units</u>	Limit of Detection	Sample Preparation	Sub-Contracted	UKAS	MCERTS
DETS 042	Cobalt	mg/kg	0.20	Air Dried	No	No	No
DETS 042	Copper	mg/kg	1.00	Air Dried	No	Yes	No
DETS 042	Chromium	mg/kg	1.00	Air Dried	No	Yes	No
DETS 042	Iron	mg/kg	1.00	Air Dried	No	No	No
DETS 042	Lead	mg/kg	1.00	Air Dried	No	Yes	No
DETS 042	Manganese	mg/kg	1.00	Air Dried	No	No	No
DETS 081	Mercury	mg/kg	0.30	Air Dried	No	No	No
DETS 042	Molybdenum	mg/kg	1.00	Air Dried	No	No	No
DETS 042	Nickel	mg/kg	1.00	Air Dried	No	Yes	No
DETS 042	Thallium	mg/kg	1.00	Air Dried	No	No	No
DETS 042	Vanadium	mg/kg	1.00	Air Dried	No	No	No
DETS 042	Zinc	mg/kg	1.00	Air Dried	No	Yes	Yes
DETS 049	Sulphur (Free)	mg/kg	0.50	As Received	No	Yes	Yes
DETS 050	РАН	mg/kg	0.10	As Received	No	Yes	No
DETS 051	TPH (C10 - C40)	mg/kg	20.00	As Received	No	Yes	Yes

Appendix A - Details of Analysis

Method details are shown only for those determinants listed in Annex A of the MCERTS standard. Anything not included on this list falls outside the scope of MCERTS. No Recovery Factors are used in the determination of results. Results reported assume 100% recovery Full method statements are available on request.

Method	Name of Parameter	<u>Units</u>	Limit of Detection	Sample Preparation	Sub-Contracted	<u>UKAS</u>	MCERTS
DETS 052	PCB	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Benzene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Toluene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Ethylbenzne	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 067	Phenol - Monohydric	mg/kg	0.3	Air Dried	No	Yes	Yes
DETS 067	Easily Liberatable Cyanide	mg/kg	0.1	Air Dried	No	Yes	Yes
DETS 067	Complex Cyanide	mg/kg	0.30	Air Dried	No	Yes	No
DETS 067	Total Cyanide	mg/kg	0.40	Air Dried	No	Yes	Yes
DETS 067	Thiocyanate	mg/kg	0.6	Air Dried	No	Yes	Yes
DETS 068	VOC	mg/kg	0.01	As Received	No	No	No

2139

Client:

Certificate of Analysis

Certificate Number: 08-17051 Ian Farmer Associates 17 Rivington Court Hardwick Grange

	17 Rivington Court Hardwick Grange Woolston Warrington Cheshire WA1 4RT
Our Reference:	08-17051
Client Reference:	40274
Contract Title:	Warren Hall
Description:	21 soil samples
Date Received:	30/01/2008
Date Started:	30/01/2008
Date Completed:	12/02/2008
Test Procedures:	Identified by prefix DETSn, details available upon request.
Notes:	Observations and interpretations are outside the scope of UKAS accreditation * denotes test not included in laboratory scope of accreditation # denotes test that holds MCERT accreditation \$ denotes tests completed by approved subcontractors I/S denotes insufficient sample to carry out test N/S denotes that the sample is not suitable for testing Solid samples will be disposed 1 month and liquids 2 weeks after the date of issue of this test certificate

Approved By:

PUQ.

Authorised Signatories:

Rob Brown Business Manager

Page 1 of 19

Date: 12/02/2008

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

		Lab No.	115726	115727	115728	115729
		Sample Ref	TP01	TP02	TP03	TP03
		Depth	0.30	0.30	0.30	0.90
		Other Ref				
		Sample Type				
Test	Units	DETSxx				
Arsenic	mg/kg	DETS 042#	6	6	6	44
Cadmium	mg/kg	DETS 042	1.1	1.2	1.3	1.9
Chromium	mg/kg	DETS 042	18	17	16	13
Copper	mg/kg	DETS 042	15	9	12	19
Lead	mg/kg	DETS 042	23	27	21	59
Mercury	mg/kg	DETS 081*	< 0.3	< 0.3	< 0.3	< 0.3
Nickel	mg/kg	DETS 042	24	11	15	3
Selenium	mg/kg	DETS 042	< 0.3	< 0.3	< 0.3	< 0.3
Zinc	mg/kg	DETS 042#	39	30	32	13
Boron (water soluble)	mg/kg	DETS 020#	< 0.2	< 0.2	0.3	0.5
Cyanide free	mg/kg	DETS 067#	< 0.1	< 0.1	< 0.1	< 0.1
Sulphate Aqueous Extract as SO4	g/l	DETS 076#	0.02	0.02	< 0.01	0.05
рН		DETS 008#	8.6	8.5	8.6	6.3
Aliphatic C5-C6	mg/kg	DETS 072*			< 0.01	
Aliphatic C6-C8	mg/kg	DETS 072*			< 0.01	
Aliphatic C8-C10	mg/kg	DETS 072*			< 0.01	
Aliphatic C10-C12	mg/kg	DETS 072*			< 0.1	
Aliphatic C12-C16	mg/kg	DETS 072*			< 0.1	
Aliphatic C16-C21	mg/kg	DETS 072*			< 0.1	
Aliphatic C21-C35	mg/kg	DETS 072*			< 0.1	
Aromatic C5-C7	mg/kg	DETS 072*			< 0.01	
Aromatic C7-C8	mg/kg	DETS 072*			< 0.01	
Aromatic C8-C10	mg/kg	DETS 072*			< 0.01	
Aromatic C10-C12	mg/kg	DETS 072*			< 0.1	
Aromatic C12-C16	mg/kg	DETS 072*			< 0.1	
Aromatic C16-C21	mg/kg	DETS 072*			< 0.1	
Aromatic C21-C35	mg/kg	DETS 072*			< 0.1	
Aliphatic C5-C35	mg/kg	DETS 072*			< 0.1	
Aromatic C5-C35	mg/kg	DETS 072*			< 0.1	
TPH Ali/Aro	mg/kg	DETS 072*			< 0.1	

Depth0.300.300.300.300.300.30Uter RefSampe TypeTedUnitDETS 050< 0.1			Lab No.	115726	115727	115728	115729
Samp Type Tet Other Net Aconaptifience mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1			Sample Ref	TP01	TP02	TP03	TP03
Test Unix DETS xx Acenaphtnene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 Acenaphtyene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 Antracene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 Benzo(ajanthracene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 Benzo(ajanthracene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 Benzo(ajk)uoranthene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 Benzo(ajk)uoranthene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 Chargene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 Fluoranthene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 Fluoranthene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 Fluoranthene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 Fluoranthene mg/kg DETS 050 <t< th=""><th></th><th></th><th>•</th><th>0.30</th><th>0.30</th><th>0.30</th><th>0.90</th></t<>			•	0.30	0.30	0.30	0.90
Test Units DETSxx Acomapthiene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 Acomapthiene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 Anthracene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 Benzolajnyrene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 Benzolajnyrene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 Benzolajnyren mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 Benzolajnyren mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>							
Acenaphthene mgkg DETS 050 < 0.1	Test	Unite					
Acenapthylene mgkg DETS 050 < 0.1				0.4	0.4	0.4	0.4
Anthracene mgkg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 Benzo(a)punne mgkg DETS 050 < 0.1							
Benzo(a)anthracene mgkg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 Benzo(a)pyrene mgkg DETS 050 < 0.1							
Benzolajprene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1							
Benzo(b)Tuoranthene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1							
Benzok/Huranthene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Benzotg.h.i)perylene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 Chrysene mg/kg DETS 050 < 0.1							
Chrysene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 Diberzo(a,h)anthracene mg/kg DETS 050 < 0.1							
Dibenzo(a,h)anthracene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 Fluoranthene mg/kg DETS 050 < 0.1							
Fluoranthene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 Fluorane mg/kg DETS 050 < 0.1	-						
Fluorene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 Inden(1,2,3-c,d)pyrene mg/kg DETS 050 < 0.1							
Indeno(1,2,3-c,d)pyrene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 Napthalene mg/kg DETS 050 < 0.1							
Napthalene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 Phenanthrene mg/kg DETS 050 < 0.1							
Phenanthrene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 Pyrene mg/kg DETS 050 < 0.1							
Pyrene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 PAH mg/kg DETS 050 < 5.0	•						
PAH mg/kg DETS 050 < 5.0 < 5.0 < 5.0 Benzene mg/kg DETS 062# < 0.01							
Benzene mg/kg DETS 062# < 0.01 Ethylbenzene mg/kg DETS 062# < 0.01	-						
Ethylbenzene mg/kg DETS 062# < 0.01 Toluene mg/kg DETS 062# < 0.01							
Toluene mg/kg DETS 062# < 0.01 Xylene mg/kg DETS 062# < 0.01	Ethylbenzene						
Xylene mg/kg DETS 062# < 0.01 Phenol - Monohydric mg/kg DETS 067# < 0.3	Toluene		DETS 062#			< 0.01	
PCB mg/kg DETS 052* < 0.01 2,2',4,4',5,5'-Hexachlorobiphenyl PCB 153 mg/kg DETS 052* < 0.01	Xylene		DETS 062#			< 0.01	
2.2', 4, 4', 5, 5'-Hexachlorobiphenyl PCB 153 mg/kg DETS 052* < 0.01	Phenol - Monohydric	mg/kg	DETS 067#	< 0.3	< 0.3	< 0.3	< 0.3
2,3',4,4',5-Pentachlorobiphenyl PCB 118 mg/kg DETS 052* < 0.01	PCB	mg/kg	DETS 052*			< 0.01	
2,2',3,4,4',5,5'-Heptachlorobiphenyl PCB 180 mg/kg DETS 052* < 0.01	2,2',4,4',5,5'-Hexachlorobiphenyl PCB 153	mg/kg	DETS 052*			< 0.01	
2,2',3,4,4',5'-Hexachlorobiphenyl PCB 138 mg/kg DETS 052* < 0.01	2,3',4,4',5-Pentachlorobiphenyl PCB 118	mg/kg	DETS 052*			< 0.01	
2,2',4,5,5'-Pentachlorobiphenyl PCB 101 mg/kg DETS 052* < 0.01	2,2',3,4,4',5,5'-Heptachlorobiphenyl PCB 180	mg/kg	DETS 052*			< 0.01	
2,4,4'-Trichlorobiphenyl PCB 28 mg/kg DETS 052* < 0.01	2,2',3,4,4',5'-Hexachlorobiphenyl PCB 138	mg/kg	DETS 052*			< 0.01	
2,2',5,5'-Tetrachlorobiphenyl PCB 52 mg/kg DETS 052* < 0.01	2,2',4,5,5'-Pentachlorobiphenyl PCB 101	mg/kg	DETS 052*			< 0.01	
Total VOC's mg/kg DETS 068* < 0.01 1,2-dichloropropane mg/kg DETS 068* < 0.01	2,4,4'-Trichlorobiphenyl PCB 28	mg/kg	DETS 052*			< 0.01	
1,2-dichloropropane mg/kg DETS 068* < 0.01	2,2',5,5'-Tetrachlorobiphenyl PCB 52	mg/kg	DETS 052*			< 0.01	
Dibromomethanemg/kgDETS 068*< 0.01Bromodichloromethanemg/kgDETS 068*< 0.01	Total VOC's	mg/kg	DETS 068*			< 0.01	
Bromodichloromethanemg/kgDETS 068*< 0.01cis-1,3-dichloropropenemg/kgDETS 068*< 0.01	1,2-dichloropropane	mg/kg	DETS 068*			< 0.01	
cis-1,3-dichloropropene mg/kg DETS 068* < 0.01 Toluene mg/kg DETS 068* < 0.01	Dibromomethane	mg/kg	DETS 068*			< 0.01	
Toluene mg/kg DETS 068* < 0.01 trans-1,3-dichloropropene mg/kg DETS 068* < 0.01	Bromodichloromethane	mg/kg	DETS 068*			< 0.01	
trans-1,3-dichloropropene mg/kg DETS 068* < 0.01	cis-1,3-dichloropropene	mg/kg	DETS 068*			< 0.01	
1,1,2-trichloroethane mg/kg DETS 068* < 0.01	Toluene	mg/kg	DETS 068*			< 0.01	
Tetrachloroethylene mg/kg DETS 068* < 0.01 1,3-dichloropropane mg/kg DETS 068* < 0.01	trans-1,3-dichloropropene	mg/kg	DETS 068*			< 0.01	
1,3-dichloropropane mg/kg DETS 068* < 0.01	1,1,2-trichloroethane	mg/kg	DETS 068*			< 0.01	
Dibromochloromethane mg/kg DETS 068* < 0.01 1,2-dibromoethane mg/kg DETS 068* < 0.01	Tetrachloroethylene	mg/kg	DETS 068*			< 0.01	
1,2-dibromoethane mg/kg DETS 068* < 0.01 Chlorobenzene mg/kg DETS 068* < 0.01	1,3-dichloropropane	mg/kg	DETS 068*			< 0.01	
Chlorobenzenemg/kgDETS 068*< 0.01Ethylbenzene+1,1,1,2-tetrachloroethanemg/kgDETS 068*< 0.01	Dibromochloromethane	mg/kg	DETS 068*			< 0.01	
Ethylbenzene+1,1,1,2-tetrachloroethane mg/kg DETS 068* < 0.01							
	-						
m+p-Xylene mg/kg DETS 068* < 0.01	m+p-Xylene	mg/kg	DETS 068*			< 0.01	

·			Lab No.	115726	115727	115728	115729
Other Ref Sample Type Sample Type Test Units DETS value o'Xylene mg/kg DETS 068* < 0.01 Styrene mg/kg DETS 068* < 0.01 Bromotorm mg/kg DETS 068* < 0.01 Bromobenzene mg/kg DETS 068* < 0.01 Derstone mg/kg DETS 068* < 0.01 2.3.trichloropropane mg/kg DETS 068* < 0.01 2.chlorotoluene mg/kg DETS 068* < 0.01 2.chlorotoluene mg/kg DETS 068* < 0.01 1.3.5.trimethylbenzene mg/kg DETS 068* < 0.01 1.3.4.chlorobenzene mg/kg DETS 068* < 0.01 1.3.4.trimethylbenzene mg/kg DETS 068* < 0.01 1.2.4.trimethylbenzene mg/kg DETS 068* < 0.01 1.2.4.trinethylbenzene mg/kg DETS 068* < 0.01 1.2.4.trichlorobenzene mg/kg DETS 068*<			Sample Ref	TP01	TP02	TP03	TP03
Test Units DETS xx o-Xylene mg/kg DETS 068* < 0.01 Styrene mg/kg DETS 068* < 0.01 Bromoform mg/kg DETS 068* < 0.01 Bromoberne mg/kg DETS 068* < 0.01 Isoprophenzene mg/kg DETS 068* < 0.01 1.2,3-trichloropropane mg/kg DETS 068* < 0.01 1.3,5-trimethybenzene mg/kg DETS 068* < 0.01 2.chorotoluene mg/kg DETS 068* < 0.01 1.3,5-trimethybenzene mg/kg DETS 068* < 0.01 2.chorotoluene mg/kg DETS 068* < 0.01 1.2,4-trimethybenzene mg/kg DETS 068* < 0.01 1.2,4-trimethybenzene mg/kg DETS 068* < 0.01 1.2,4-trimethybenzene mg/kg DETS 068* < 0.01 1.2,4-trinethybenzene mg/kg DETS 068* < 0.01 1.2,4-trichtorobenzene mg/kg DETS 068* < 0.01 1.4-dichtorobenzene <th></th> <th></th> <th>Depth</th> <th>0.30</th> <th>0.30</th> <th>0.30</th> <th>0.90</th>			Depth	0.30	0.30	0.30	0.90
TestUnitsDETS offstc.Xylenemg/kgDETS 068*< 0.01Styrenemg/kgDETS 068*< 0.01Bromoformmg/kgDETS 068*< 0.01Isopropylbenzenemg/kgDETS 068*< 0.01Bromobenzenemg/kgDETS 068*< 0.01n-propylbenzenemg/kgDETS 068*< 0.012.3-trichloropropanemg/kgDETS 068*< 0.012chorobluenemg/kgDETS 068*< 0.012chorobluenemg/kgDETS 068*< 0.011.3.5-trimethylbenzenemg/kgDETS 068*< 0.012chorobluenemg/kgDETS 068*< 0.011.3.4-trimethylbenzenemg/kgDETS 068*< 0.011.2.4-trimethylbenzenemg/kgDETS 068*< 0.011.2.4-trimethylbenzenemg/kgDETS 068*< 0.011.2.4-trimethylbenzenemg/kgDETS 068*< 0.011.2.4-trinethylbenzenemg/kgDETS 068*<			Other Ref				
o-Xylene mg/kg DETS 068* < 0.01 Styrene mg/kg DETS 068* < 0.01 Bromotorm mg/kg DETS 068* < 0.01 Bromotorm mg/kg DETS 068* < 0.01 Bromotenzene mg/kg DETS 068* < 0.01 propolybenzene mg/kg DETS 068* < 0.01 propolybenzene mg/kg DETS 068* < 0.01 2-chiorotoluene mg/kg DETS 068* < 0.01 2-chiorotoluene mg/kg DETS 068* < 0.01 1,3.5-trimethylbenzene mg/kg DETS 068* < 0.01 1,2.4-trimethylbenzene mg/kg DETS 068* < 0.01 1,2.4-trinethylbenzene mg/kg DETS 068* < 0.01 1,2.4-trichlorobenzene mg/kg DETS 068* < 0.01			Sample Type				
Syrene mg/kg DETS 068* < 0.01	Test	Units	DETSxx				
Bromotorm mg/kg DETS 068* < 0.01	o-Xylene	mg/kg	DETS 068*			< 0.01	
boroylbenzene mg/kg DETS 068* < 0.01	Styrene	mg/kg	DETS 068*			< 0.01	
Bronobenzene mg/kg DETS 068* < 0.01 1,2,3-trichloropropane mg/kg DETS 068* < 0.01	Bromoform	mg/kg	DETS 068*			< 0.01	
1.2.3-trichloropropane mg/kg DETS 068* < 0.01	Isopropylbenzene	mg/kg	DETS 068*			< 0.01	
n-propylbenzene mg/kg DETS 068* < 0.01	Bromobenzene	mg/kg	DETS 068*			< 0.01	
2-chlorotoluene mg/kg DETS 068* < 0.01	1,2,3-trichloropropane	mg/kg	DETS 068*			< 0.01	
1,3,5-trimethylbenzene mg/kg DETS 068* < 0.01	n-propylbenzene	mg/kg	DETS 068*			< 0.01	
4-chlorotoluene mg/kg DETS 068* < 0.01	2-chlorotoluene	mg/kg	DETS 068*			< 0.01	
Tert-butylbenzene mg/kg DETS 068* < 0.01 1,2,4-trimethylbenzene mg/kg DETS 068* < 0.01	1,3,5-trimethylbenzene	mg/kg	DETS 068*			< 0.01	
1,2,4-trimethylbenzene mg/kg DETS 068* < 0.01	4-chlorotoluene	mg/kg	DETS 068*			< 0.01	
sec-butylbenzene mg/kg DETS 068* < 0.01 1,3-dichlorobenzene+p-isopropyltoluene mg/kg DETS 068* < 0.01	Tert-butylbenzene	mg/kg	DETS 068*			< 0.01	
1,3-dichlorobenzene+p-isopropyltoluene mg/kg DETS 068* < 0.01	1,2,4-trimethylbenzene	mg/kg	DETS 068*			< 0.01	
1.4-dichlorobenzene mg/kg DETS 068* < 0.01	sec-butylbenzene	mg/kg	DETS 068*			< 0.01	
n-butylbenzene mg/kg DETS 068* < 0.01 1,2-dichlorobenzene mg/kg DETS 068* < 0.01	1,3-dichlorobenzene+p-isopropyltoluene	mg/kg	DETS 068*			< 0.01	
1,2-dichlorobenzene mg/kg DETS 068* < 0.01	1,4-dichlorobenzene	mg/kg	DETS 068*			< 0.01	
ng/kg DETS 068* < 0.01	n-butylbenzene	mg/kg	DETS 068*			< 0.01	
1,2,4-trichlorobenzene mg/kg DETS 068* < 0.01	1,2-dichlorobenzene	mg/kg	DETS 068*			< 0.01	
Hexachlorobutadiene mg/kg DETS 068* < 0.01	1,2-dibromo-3-chloropropane	mg/kg	DETS 068*			< 0.01	
Naphthalene ng/kg DETS 068* < 0.01 1,2,3-trichlorobenzene ng/kg DETS 068* < 0.01	1,2,4-trichlorobenzene	mg/kg	DETS 068*			< 0.01	
1,2,3-trichlorobenzene mg/kg DETS 068* < 0.01	Hexachlorobutadiene	mg/kg	DETS 068*			< 0.01	
Trichloroethylene mg/kg DETS 068* < 0.01	Naphthalene	mg/kg	DETS 068*			< 0.01	
Chloroform mg/kg DETS 068* < 0.01 Bromochloromethane mg/kg DETS 068* < 0.01	1,2,3-trichlorobenzene	mg/kg	DETS 068*			< 0.01	
Bromochloromethanemg/kgDETS 068*< 0.012,2-dichlororopane+1,2-dichloroethylenemg/kgDETS 068*< 0.01	Trichloroethylene	mg/kg	DETS 068*			< 0.01	
2,2-dichloroopane+1,2-dichloroethylene mg/kg DETS 068* < 0.01	Chloroform	mg/kg	DETS 068*			< 0.01	
1,1-dichloroethane mg/kg DETS 068* < 0.01	Bromochloromethane	mg/kg	DETS 068*			< 0.01	
1,2-dichloroethanemg/kgDETS 068*< 0.01Benzenemg/kgDETS 068*< 0.01	2,2-dichlororopane+1,2-dichloroethylene	mg/kg	DETS 068*			< 0.01	
Benzene mg/kg DETS 068* < 0.01 Carbon tetrachloride + 1,1-dichloropropene mg/kg DETS 068* < 0.01	1,1-dichloroethane	mg/kg	DETS 068*			< 0.01	
Carbon tetrachloride + 1,1-dichloropropenemg/kgDETS 068*< 0.01Trans-1,2-dichloroethylenemg/kgDETS 068*< 0.01	1,2-dichloroethane	mg/kg	DETS 068*			< 0.01	
Trans-1,2-dichloroethylene mg/kg DETS 068* < 0.01 Methylene Chloride mg/kg DETS 068* < 0.01	Benzene	mg/kg	DETS 068*			< 0.01	
Methylene Chloride mg/kg DETS 068* < 0.01 1,1 Dichloroethylene mg/kg DETS 068* < 0.01	Carbon tetrachloride + 1,1-dichloropropene	mg/kg	DETS 068*			< 0.01	
1,1 Dichloroethylenemg/kgDETS 068*< 0.01	Trans-1,2-dichloroethylene		DETS 068*			< 0.01	
	Methylene Chloride	mg/kg	DETS 068*			< 0.01	
1,1,1-trichloroethane mg/kg DETS 068* < 0.01	1,1 Dichloroethylene	mg/kg	DETS 068*			< 0.01	
	1,1,1-trichloroethane	mg/kg	DETS 068*			< 0.01	

		Lab No.	115730	115731	115732	115733
		Sample Ref	TP04	TP05	TP05	TP06
		Depth	0.30	0.30	1.80	0.50
		Other Ref				
		Sample Type				
Test	Units	DETSxx				
Arsenic	mg/kg	DETS 042#	5	6	9	6
Cadmium	mg/kg	DETS 042	0.8	1.5	1.5	0.8
Chromium	mg/kg	DETS 042	14	13	17	12
Copper	mg/kg	DETS 042	17	11	27	13
Lead	mg/kg	DETS 042	13	22	56	38
Mercury	mg/kg	DETS 081*	< 0.3	< 0.3	< 0.3	< 0.3
Nickel	mg/kg	DETS 042	12	19	25	11
Selenium	mg/kg	DETS 042	< 0.3	< 0.3	< 0.3	< 0.3
Zinc	mg/kg	DETS 042#	24	32	61	38
Boron (water soluble)	mg/kg	DETS 020#	1.6	0.8	0.5	1.1
Cyanide free	mg/kg	DETS 067#	< 0.1	0.1	< 0.1	< 0.1
Sulphate Aqueous Extract as SO4	g/l	DETS 076#	0.01	0.01	0.01	0.05
pH		DETS 008#	8.1	7.4	7.7	6.7
Aliphatic C5-C6	mg/kg	DETS 072*				
Aliphatic C6-C8	mg/kg	DETS 072*				
Aliphatic C8-C10	mg/kg	DETS 072*				
Aliphatic C10-C12	mg/kg	DETS 072*				
Aliphatic C12-C16	mg/kg	DETS 072*				
Aliphatic C16-C21	mg/kg	DETS 072*				
Aliphatic C21-C35	mg/kg	DETS 072*				
Aromatic C5-C7	mg/kg	DETS 072*				
Aromatic C7-C8	mg/kg	DETS 072*				
Aromatic C8-C10	mg/kg	DETS 072*				
Aromatic C10-C12	mg/kg	DETS 072*				
Aromatic C12-C16	mg/kg	DETS 072*				
Aromatic C16-C21	mg/kg	DETS 072*				
Aromatic C21-C35	mg/kg	DETS 072*				
Aliphatic C5-C35	mg/kg	DETS 072*				
Aromatic C5-C35	mg/kg	DETS 072*				
TPH Ali/Aro	mg/kg	DETS 072*				

		Lab No.	115730	115731	115732	115733
		Sample Ref	TP04	TP05	TP05	TP06
		Depth	0.30	0.30	1.80	0.50
		Other Ref				
		Sample Type				
Test	Units	DETSxx				<u> </u>
Acenaphthene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Acenapthylene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Anthracene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)anthracene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(b)fluoranthene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(g,h,i)perylene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Chrysene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Dibenzo(a,h)anthracene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Fluoranthene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene	mg/kg	DETS 050	0.1	0.1	0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Napthalene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Pyrene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
РАН	mg/kg	DETS 050	< 5.0	< 5.0	< 5.0	< 5.0
Benzene	mg/kg	DETS 062#				
Ethylbenzene	mg/kg	DETS 062#				
Toluene	mg/kg	DETS 062#				
Xylene	mg/kg	DETS 062#				
Phenol - Monohydric	mg/kg	DETS 067#	< 0.3	< 0.3	< 0.3	< 0.3
PCB	mg/kg	DETS 052*				
2,2',4,4',5,5'-Hexachlorobiphenyl PCB 153	mg/kg	DETS 052*				
2,3',4,4',5-Pentachlorobiphenyl PCB 118	mg/kg	DETS 052*				
2,2',3,4,4',5,5'-Heptachlorobiphenyl PCB 180	mg/kg	DETS 052*				
2,2',3,4,4',5'-Hexachlorobiphenyl PCB 138	mg/kg	DETS 052*				
2,2',4,5,5'-Pentachlorobiphenyl PCB 101	mg/kg	DETS 052*				
2,4,4'-Trichlorobiphenyl PCB 28	mg/kg	DETS 052*				
2,2',5,5'-Tetrachlorobiphenyl PCB 52	mg/kg	DETS 052*				
Total VOC's	mg/kg	DETS 068*				
1,2-dichloropropane	mg/kg	DETS 068*				
Dibromomethane	mg/kg	DETS 068*				
Bromodichloromethane	mg/kg	DETS 068*				
cis-1,3-dichloropropene	mg/kg	DETS 068*				
Toluene	mg/kg	DETS 068*				
trans-1,3-dichloropropene	mg/kg	DETS 068*				
1,1,2-trichloroethane	mg/kg	DETS 068*				
Tetrachloroethylene	mg/kg	DETS 068*				
1,3-dichloropropane	mg/kg	DETS 068*				
Dibromochloromethane	mg/kg	DETS 068*				
1,2-dibromoethane	mg/kg	DETS 068*				
Chlorobenzene	mg/kg	DETS 068*				
Ethylbenzene+1,1,1,2-tetrachloroethane	mg/kg	DETS 068*				
m+p-Xylene	mg/kg	DETS 068*				

		Lab No.	115730	115731	115732	115733
		Sample Ref	TP04	TP05	TP05	TP06
		Depth	0.30	0.30	1.80	0.50
		Other Ref				
		Sample Type				
Test	Units	DETSxx				
o-Xylene	mg/kg	DETS 068*				
Styrene	mg/kg	DETS 068*				
Bromoform	mg/kg	DETS 068*				
Isopropylbenzene	mg/kg	DETS 068*				
Bromobenzene	mg/kg	DETS 068*				
1,2,3-trichloropropane	mg/kg	DETS 068*				
n-propylbenzene	mg/kg	DETS 068*				
2-chlorotoluene	mg/kg	DETS 068*				
1,3,5-trimethylbenzene	mg/kg	DETS 068*				
4-chlorotoluene	mg/kg	DETS 068*				
Tert-butylbenzene	mg/kg	DETS 068*				
1,2,4-trimethylbenzene	mg/kg	DETS 068*				
sec-butylbenzene	mg/kg	DETS 068*				
1,3-dichlorobenzene+p-isopropyltoluene	mg/kg	DETS 068*				
1,4-dichlorobenzene	mg/kg	DETS 068*				
n-butylbenzene	mg/kg	DETS 068*				
1,2-dichlorobenzene	mg/kg	DETS 068*				
1,2-dibromo-3-chloropropane	mg/kg	DETS 068*				
1,2,4-trichlorobenzene	mg/kg	DETS 068*				
Hexachlorobutadiene	mg/kg	DETS 068*				
Naphthalene	mg/kg	DETS 068*				
1,2,3-trichlorobenzene	mg/kg	DETS 068*				
Trichloroethylene	mg/kg	DETS 068*				
Chloroform	mg/kg	DETS 068*				
Bromochloromethane	mg/kg	DETS 068*				
2,2-dichlororopane+1,2-dichloroethylene	mg/kg	DETS 068*				
1,1-dichloroethane	mg/kg	DETS 068*				
1,2-dichloroethane	mg/kg	DETS 068*				
Benzene	mg/kg	DETS 068*				
Carbon tetrachloride + 1,1-dichloropropene	mg/kg	DETS 068*				
Trans-1,2-dichloroethylene	mg/kg	DETS 068*				
Methylene Chloride	mg/kg	DETS 068*				
1,1 Dichloroethylene	mg/kg	DETS 068*				
1,1,1-trichloroethane	mg/kg	DETS 068*				

		Lab No.	115734	115735	115736	115737
		Sample Ref	TP07	TP08	TP08	TP09
		Depth	0.80	0.40	1.20	0.50
		Other Ref				
		Sample Type				
Test	Units	DETSxx				
Arsenic	mg/kg	DETS 042#	5	5	6	5
Cadmium	mg/kg	DETS 042	0.9	1.1	0.9	0.8
Chromium	mg/kg	DETS 042	14	13	13	13
Copper	mg/kg	DETS 042	12	12	14	11
Lead	mg/kg	DETS 042	13	19	15	21
Mercury	mg/kg	DETS 081*	< 0.3	< 0.3	< 0.3	< 0.3
Nickel	mg/kg	DETS 042	14	9	14	10
Selenium	mg/kg	DETS 042	< 0.3	< 0.3	< 0.3	< 0.3
Zinc	mg/kg	DETS 042#	27	27	27	29
Boron (water soluble)	mg/kg	DETS 020#	0.9	0.8	2.0	0.9
Cyanide free	mg/kg	DETS 067#	< 0.1	< 0.1	< 0.1	0.1
Sulphate Aqueous Extract as SO4	g/l	DETS 076#	0.02	0.02	0.04	0.02
рН		DETS 008#	7.9	7.0	7.0	7.4
Aliphatic C5-C6	mg/kg	DETS 072*		< 0.01		
Aliphatic C6-C8	mg/kg	DETS 072*		< 0.01		
Aliphatic C8-C10	mg/kg	DETS 072*		< 0.01		
Aliphatic C10-C12	mg/kg	DETS 072*		< 0.1		
Aliphatic C12-C16	mg/kg	DETS 072*		< 0.1		
Aliphatic C16-C21	mg/kg	DETS 072*		< 0.1		
Aliphatic C21-C35	mg/kg	DETS 072*		< 0.1		
Aromatic C5-C7	mg/kg	DETS 072*		< 0.01		
Aromatic C7-C8	mg/kg	DETS 072*		< 0.01		
Aromatic C8-C10	mg/kg	DETS 072*		< 0.01		
Aromatic C10-C12	mg/kg	DETS 072*		< 0.1		
Aromatic C12-C16	mg/kg	DETS 072*		< 0.1		
Aromatic C16-C21	mg/kg	DETS 072*		< 0.1		
Aromatic C21-C35	mg/kg	DETS 072*		< 0.1		
Aliphatic C5-C35	mg/kg	DETS 072*		< 0.1		
Aromatic C5-C35	mg/kg	DETS 072*		< 0.1		
TPH Ali/Aro	mg/kg	DETS 072*		< 0.1		

		Lab No.	115734	115735	115736	115737
		Sample Ref	TP07	TP08	TP08	TP09
		Depth	0.80	0.40	1.20	0.50
		Other Ref				
		Sample Type				
Test	Units	DETSxx				
Acenaphthene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Acenapthylene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Anthracene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	0.1
Benzo(a)anthracene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	0.5
Benzo(a)pyrene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	1.0
Benzo(b)fluoranthene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	0.5
Benzo(k)fluoranthene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	0.9
Benzo(g,h,i)perylene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	0.2
Chrysene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	0.4
Dibenzo(a,h)anthracene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	4.2
Fluoranthene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	0.6
Fluorene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	0.8
Napthalene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	0.2
Phenanthrene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	0.2
Pyrene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	0.5
PAH	mg/kg	DETS 050	< 5.0	< 5.0	< 5.0	10
Benzene	mg/kg	DETS 062#		< 0.01		
Ethylbenzene	mg/kg	DETS 062#		< 0.01		
Toluene	mg/kg	DETS 062#		< 0.01		
Xylene	mg/kg	DETS 062#		< 0.01		
Phenol - Monohydric	mg/kg	DETS 067#	< 0.3	< 0.3	< 0.3	< 0.3
PCB	mg/kg	DETS 052*		< 0.01		
2,2',4,4',5,5'-Hexachlorobiphenyl PCB 153	mg/kg	DETS 052*		< 0.01		
2,3',4,4',5-Pentachlorobiphenyl PCB 118	mg/kg	DETS 052*		< 0.01		
2,2',3,4,4',5,5'-Heptachlorobiphenyl PCB 180	mg/kg	DETS 052*		< 0.01		
2,2',3,4,4',5'-Hexachlorobiphenyl PCB 138	mg/kg	DETS 052*		< 0.01		
2,2',4,5,5'-Pentachlorobiphenyl PCB 101	mg/kg	DETS 052*		< 0.01		
2,4,4'-Trichlorobiphenyl PCB 28	mg/kg	DETS 052*		< 0.01		
2,2',5,5'-Tetrachlorobiphenyl PCB 52	mg/kg	DETS 052*		< 0.01		
Total VOC's	mg/kg	DETS 068*		< 0.01		
1,2-dichloropropane	mg/kg	DETS 068*		< 0.01		
Dibromomethane	mg/kg	DETS 068*		< 0.01		
Bromodichloromethane	mg/kg	DETS 068*		< 0.01		
cis-1,3-dichloropropene	mg/kg	DETS 068*		< 0.01		
Toluene	mg/kg	DETS 068*		< 0.01		
trans-1,3-dichloropropene	mg/kg	DETS 068*		< 0.01		
1,1,2-trichloroethane	mg/kg	DETS 068*		< 0.01		
Tetrachloroethylene	mg/kg	DETS 068*		< 0.01		
1,3-dichloropropane	mg/kg	DETS 068*		< 0.01		
Dibromochloromethane	mg/kg	DETS 068*		< 0.01		
1,2-dibromoethane	mg/kg	DETS 068*		< 0.01		
Chlorobenzene	mg/kg	DETS 068*		< 0.01		
Ethylbenzene+1,1,1,2-tetrachloroethane	mg/kg	DETS 068*		< 0.01		

Sample Ref TP06 TP08 TP09 Depth 0.80 0.40 1.20 0.50 Depth 0.80 0.40 1.20 0.50 Sample Type Test Units DETS 068* < 0.01			Lab No.	115734	115735	115736	115737		
Other Ref Sample Type Sample Type Colspan="2">Sample Type Or Xylene DETS 068' < 0.01	<th></th> <th></th> <th>Sample Ref</th> <th>TP07</th> <th>TP08</th> <th>TP08</th> <th>TP09</th>				Sample Ref	TP07	TP08	TP08	TP09
Sample Type Test Units DETSx o-Xylene mg/kg DETS 068' < 0.01 Styrene mg/kg DETS 068' < 0.01 Bromoform mg/kg DETS 068' < 0.01 Bromoham mg/kg DETS 068' < 0.01 Bromoham mg/kg DETS 068' < 0.01 1.2.3-trichloropropane mg/kg DETS 068' < 0.01 1.2.3-trichloropropane mg/kg DETS 068' < 0.01 1.3.5-trimethybenzene mg/kg DETS 068' < 0.01 2-chlorotoluene mg/kg DETS 068' < 0.01 2-chlorotoluene mg/kg DETS 068' < 0.01 2-chlorotoluene mg/kg DETS 068' < 0.01 2-drinorbybenzene mg/kg DETS 068' < 0.01 1.2-drinorbhonzene+j-isopropytoluene mg/kg DETS 068' < 0.01 1.3-dichorobenzene mg/kg DETS 068' < 0.01 1.4-dichlorobenzene mg/kg DETS 068' < 0.01			Depth	0.80	0.40	1.20	0.50		
Test Units DETS/x c-Xylene mg/kg DETS 068* < 0.01 Styrene mg/kg DETS 068* < 0.01 Bromoform mg/kg DETS 068* < 0.01 Isopropylbenzene mg/kg DETS 068* < 0.01 Bromoform mg/kg DETS 068* < 0.01 12.3 trichthropropane mg/kg DETS 068* < 0.01 1.2.3 trichthrybenzene mg/kg DETS 068* < 0.01 2-chlorotoluene mg/kg DETS 068* < 0.01 1.3.5-trimethrybenzene mg/kg DETS 068* < 0.01 2-chlorotoluene mg/kg DETS 068* < 0.01 1.2.4-trimethrybenzene mg/kg DETS 068* < 0.01 1.2.4-trimethrybenzene mg/kg DETS 068* < 0.01 1.2.4-trimethrybenzene mg/kg DETS 068* < 0.01 1.2.4-trichtorobenzene mg/kg DETS 068* < 0.01 1.3-dichlorobenzene mg/kg DETS 068* < 0.01 1.2-dichloropropane			Other Ref						
o-Xylene mg/kg DETS 068* < 0.01 Styrene mg/kg DETS 068* < 0.01 Bromoform mg/kg DETS 068* < 0.01 Bromoform mg/kg DETS 068* < 0.01 Bromobenzene mg/kg DETS 068* < 0.01 1.2.3 trichloropropane mg/kg DETS 068* < 0.01 -propylbenzene mg/kg DETS 068* < 0.01 2-chlorotoluene mg/kg DETS 068* < 0.01 1.3.5-trimethylbenzene mg/kg DETS 068* < 0.01 1.4-chlorotoluene mg/kg DETS 068* < 0.01 1.2.4-trimethylbenzene mg/kg DETS 068* < 0.01 1.2.4-trimethylbenzene mg/kg DETS 068* < 0.01 1.2.4-trimethylbenzene mg/kg DETS 068* < 0.01 1.4-dichlorobenzene+pisopropyltoluene mg/kg DETS 068* < 0.01 1.2-dichorobenzene mg/kg DETS 068* < 0.01 1.2-dichorobenzene mg/kg DETS 068* < 0.01			Sample Type						
Styrene mg/kg DETS 068* < 0.01	Test	Units	DETSxx						
Bromoform mg/kg DETS 068* < 0.01 Isoproylbenzene mg/kg DETS 068* < 0.01	o-Xylene	mg/kg	DETS 068*		< 0.01				
Isopropylbenzene mg/kg DETS 068* < 0.01 Bromobenzene mg/kg DETS 068* < 0.01	Styrene	mg/kg	DETS 068*		< 0.01				
Bromobenzene mg/kg DETS 068* < 0.01 1,2,3-trichloropropane mg/kg DETS 068* < 0.01	Bromoform	mg/kg	DETS 068*		< 0.01				
1.2.3-trichloropropane mg/kg DETS 068* < 0.01	lsopropylbenzene	mg/kg	DETS 068*		< 0.01				
n-propylbenzene mg/kg DETS 068* < 0.01 2-chlorotoluene mg/kg DETS 068* < 0.01	Bromobenzene	mg/kg	DETS 068*		< 0.01				
2-chlorobluene mg/kg DETS 068* < 0.01 1,3,5-trimethylbenzene mg/kg DETS 068* < 0.01	1,2,3-trichloropropane	mg/kg	DETS 068*		< 0.01				
1,3,5-trimethylbenzene mg/kg DETS 068* < 0.01	n-propylbenzene	mg/kg	DETS 068*		< 0.01				
4-chlorotoluene mg/kg DETS 068* < 0.01	2-chlorotoluene	mg/kg	DETS 068*		< 0.01				
Tert-butylbenzene mg/kg DETS 068* < 0.01 1,2,4-trimethylbenzene mg/kg DETS 068* < 0.01	1,3,5-trimethylbenzene	mg/kg	DETS 068*		< 0.01				
1,2,4-timethylbenzene mg/kg DETS 068* < 0.01	4-chlorotoluene	mg/kg	DETS 068*		< 0.01				
sec-butylbenzene mg/kg DETS 068* < 0.01 1,3-dichlorobenzene+p-isopropyltoluene mg/kg DETS 068* < 0.01	Tert-butylbenzene	mg/kg	DETS 068*		< 0.01				
1,3-dichlorobenzene+p-isopropyltoluene mg/kg DETS 068* < 0.01 1,4-dichlorobenzene mg/kg DETS 068* < 0.01	1,2,4-trimethylbenzene	mg/kg	DETS 068*		< 0.01				
1,4-dichlorobenzenemg/kgDETS 068*< 0.01n-butylbenzenemg/kgDETS 068*< 0.01	sec-butylbenzene	mg/kg	DETS 068*		< 0.01				
n-butylbenzene mg/kg DETS 068* < 0.01 1,2-dichlorobenzene mg/kg DETS 068* < 0.01	1,3-dichlorobenzene+p-isopropyltoluene	mg/kg	DETS 068*		< 0.01				
1.2-dichlorobenzene mg/kg DETS 068* < 0.01	1,4-dichlorobenzene	mg/kg	DETS 068*		< 0.01				
1,2-dibromo-3-chloropropane mg/kg DETS 068* < 0.01	n-butylbenzene	mg/kg	DETS 068*		< 0.01				
1,2,4-trichlorobenzene mg/kg DETS 068* < 0.01	1,2-dichlorobenzene	mg/kg	DETS 068*		< 0.01				
Hexachlorobutadiene mg/kg DETS 068* < 0.01 Naphthalene mg/kg DETS 068* < 0.01	1,2-dibromo-3-chloropropane	mg/kg	DETS 068*		< 0.01				
Naphthalene mg/kg DETS 068* < 0.01 1,2,3-trichlorobenzene mg/kg DETS 068* < 0.01	1,2,4-trichlorobenzene	mg/kg	DETS 068*		< 0.01				
1,2,3-trichlorobenzene mg/kg DETS 068* < 0.01	Hexachlorobutadiene	mg/kg	DETS 068*		< 0.01				
Trichloroethylene mg/kg DETS 068* < 0.01	Naphthalene	mg/kg	DETS 068*		< 0.01				
Chloroform mg/kg DETS 068* < 0.01 Bromochloromethane mg/kg DETS 068* < 0.01	1,2,3-trichlorobenzene	mg/kg	DETS 068*		< 0.01				
Bromochloromethanemg/kgDETS 068*< 0.012,2-dichlororopane+1,2-dichloroethylenemg/kgDETS 068*< 0.01	Trichloroethylene	mg/kg	DETS 068*		< 0.01				
2,2-dichlororopane+1,2-dichloroethylene mg/kg DETS 068* < 0.01	Chloroform	mg/kg	DETS 068*		< 0.01				
1,1-dichloroethane mg/kg DETS 068* < 0.01	Bromochloromethane	mg/kg	DETS 068*		< 0.01				
1,2-dichloroethane mg/kg DETS 068* < 0.01	2,2-dichlororopane+1,2-dichloroethylene	mg/kg	DETS 068*		< 0.01				
Benzene mg/kg DETS 068* < 0.01 Carbon tetrachloride + 1,1-dichloropropene mg/kg DETS 068* < 0.01	1,1-dichloroethane	mg/kg	DETS 068*		< 0.01				
Carbon tetrachloride + 1,1-dichloropropenemg/kgDETS 068*< 0.01Trans-1,2-dichloroethylenemg/kgDETS 068*< 0.01	1,2-dichloroethane	mg/kg	DETS 068*		< 0.01				
Trans-1,2-dichloroethylene mg/kg DETS 068* < 0.01 Methylene Chloride mg/kg DETS 068* < 0.01	Benzene	mg/kg	DETS 068*		< 0.01				
Methylene Chloride mg/kg DETS 068* < 0.01 1,1 Dichloroethylene mg/kg DETS 068* < 0.01	Carbon tetrachloride + 1,1-dichloropropene	mg/kg	DETS 068*		< 0.01				
Methylene Chloride mg/kg DETS 068* < 0.01 1,1 Dichloroethylene mg/kg DETS 068* < 0.01	Trans-1,2-dichloroethylene	mg/kg	DETS 068*		< 0.01				
	Methylene Chloride		DETS 068*		< 0.01				
1,1,1-trichloroethane mg/kg DETS 068* < 0.01	1,1 Dichloroethylene	mg/kg	DETS 068*		< 0.01				
	1,1,1-trichloroethane	mg/kg	DETS 068*		< 0.01				

		Lab No.	115738	115739	115740	115741
		Sample Ref	TP10	TP10	TP11	TP12 0.50
		Depth	0.50	1.50	0.60	
		Other Ref				
		Sample Type				
Test	Units	DETSxx				
Arsenic	mg/kg	DETS 042#	5	6	8	6
Cadmium	mg/kg	DETS 042	1.0	1.8	1.1	1.0
Chromium	mg/kg	DETS 042	13	13	14	17
Copper	mg/kg	DETS 042	10	13	38	15
Lead	mg/kg	DETS 042	37	19	30	12
Mercury	mg/kg	DETS 081*	< 0.3	< 0.3	< 0.3	< 0.3
Nickel	mg/kg	DETS 042	11	18	20	18
Selenium	mg/kg	DETS 042	< 0.3	< 0.3	0.6	< 0.3
Zinc	mg/kg	DETS 042#	34	31	27	31
Boron (water soluble)	mg/kg	DETS 020#	1.0	0.8	1.0	0.9
Cyanide free	mg/kg	DETS 067#	0.3	< 0.1	< 0.1	< 0.1
Sulphate Aqueous Extract as SO4	g/l	DETS 076#	0.01	0.02	0.33	0.01
рН		DETS 008#	7.2	7.7	6.5	8.2
Aliphatic C5-C6	mg/kg	DETS 072*				< 0.01
Aliphatic C6-C8	mg/kg	DETS 072*				< 0.01
Aliphatic C8-C10	mg/kg	DETS 072*				< 0.01
Aliphatic C10-C12	mg/kg	DETS 072*				< 0.1
Aliphatic C12-C16	mg/kg	DETS 072*				< 0.1
Aliphatic C16-C21	mg/kg	DETS 072*				22
Aliphatic C21-C35	mg/kg	DETS 072*				< 0.1
Aromatic C5-C7	mg/kg	DETS 072*				< 0.01
Aromatic C7-C8	mg/kg	DETS 072*				< 0.01
Aromatic C8-C10	mg/kg	DETS 072*				< 0.01
Aromatic C10-C12	mg/kg	DETS 072*				< 0.1
Aromatic C12-C16	mg/kg	DETS 072*				< 0.1
Aromatic C16-C21	mg/kg	DETS 072*				< 0.1
Aromatic C21-C35	mg/kg	DETS 072*				< 0.1
Aliphatic C5-C35	mg/kg	DETS 072*				22
Aromatic C5-C35	mg/kg	DETS 072*				< 0.1
TPH Ali/Aro	mg/kg	DETS 072*				22

		Lab No.	115738	115739	115740	115741
		Sample Ref	TP10	TP10	TP11	TP12
		Depth	0.50	1.50	0.60	0.50
		Other Ref				
		Sample Type				
Test	Units	DETSxx	0.4	0.4	0.4	
Acenaphthene	mg/kg	DETS 050	0.1	0.1	< 0.1	< 0.1
Acenapthylene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Anthracene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)anthracene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	mg/kg	DETS 050	0.4	< 0.1	< 0.1	< 0.1
Benzo(b)fluoranthene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(g,h,i)perylene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Chrysene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Dibenzo(a,h)anthracene	mg/kg	DETS 050	1.5	0.5	< 0.1	< 0.1
Fluoranthene	mg/kg	DETS 050	0.1	< 0.1	< 0.1	< 0.1
Fluorene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	DETS 050	0.3	< 0.1	< 0.1	< 0.1
Napthalene	mg/kg	DETS 050	0.2	0.2	< 0.1	< 0.1
Phenanthrene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Pyrene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
PAH	mg/kg	DETS 050	< 5.0	< 5.0	< 5.0	< 5.0
Benzene	mg/kg	DETS 062#				
Ethylbenzene	mg/kg	DETS 062#				
Toluene	mg/kg	DETS 062#				
Xylene	mg/kg	DETS 062#				
Phenol - Monohydric	mg/kg	DETS 067#	< 0.3	< 0.3	< 0.3	< 0.3
PCB	mg/kg	DETS 052*				< 0.01
2,2',4,4',5,5'-Hexachlorobiphenyl PCB 153	mg/kg	DETS 052*				< 0.01
2,3',4,4',5-Pentachlorobiphenyl PCB 118	mg/kg	DETS 052*				< 0.01
2,2',3,4,4',5,5'-Heptachlorobiphenyl PCB 180	mg/kg	DETS 052*				< 0.01
2,2',3,4,4',5'-Hexachlorobiphenyl PCB 138	mg/kg	DETS 052*				< 0.01
2,2',4,5,5'-Pentachlorobiphenyl PCB 101	mg/kg	DETS 052*				< 0.01
2,4,4'-Trichlorobiphenyl PCB 28	mg/kg	DETS 052*				< 0.01
2,2',5,5'-Tetrachlorobiphenyl PCB 52	mg/kg	DETS 052*				< 0.01
Total VOC's	mg/kg	DETS 068*				< 0.01
1,2-dichloropropane	mg/kg	DETS 068*				< 0.01
Dibromomethane	mg/kg	DETS 068*				< 0.01
Bromodichloromethane	mg/kg	DETS 068*				< 0.01
cis-1,3-dichloropropene	mg/kg	DETS 068*				< 0.01
Toluene	mg/kg	DETS 068*				< 0.01
trans-1,3-dichloropropene	mg/kg	DETS 068*				< 0.01
1,1,2-trichloroethane	mg/kg	DETS 068*				< 0.01
Tetrachloroethylene	mg/kg	DETS 068*				< 0.01
1,3-dichloropropane	mg/kg	DETS 068*				< 0.01
Dibromochloromethane	mg/kg	DETS 068*				< 0.01
1,2-dibromoethane	mg/kg	DETS 068*				< 0.01
Chlorobenzene	mg/kg	DETS 068*				< 0.01
Ethylbenzene+1,1,1,2-tetrachloroethane	mg/kg	DETS 068*				< 0.01
m+p-Xylene	mg/kg	DETS 068*				< 0.01

		Lab No. Sample Ref Depth Other Ref	115738 TP10 0.50	115739 TP10 1.50	115740 TP11 0.60	115741 TP12 0.50
		Sample Type				
Test	Units	DETSxx				
o-Xylene	mg/kg	DETS 068*				< 0.01
Styrene	mg/kg	DETS 068*				< 0.01
Bromoform	mg/kg	DETS 068*				< 0.01
Isopropylbenzene	mg/kg	DETS 068*				< 0.01
Bromobenzene	mg/kg	DETS 068*				< 0.01
1,2,3-trichloropropane	mg/kg	DETS 068*				< 0.01
n-propylbenzene	mg/kg	DETS 068*				< 0.01
2-chlorotoluene	mg/kg	DETS 068*				< 0.01
1,3,5-trimethylbenzene	mg/kg	DETS 068*				< 0.01
4-chlorotoluene	mg/kg	DETS 068*				< 0.01
Tert-butylbenzene	mg/kg	DETS 068*				< 0.01
1,2,4-trimethylbenzene	mg/kg	DETS 068*				< 0.01
sec-butylbenzene	mg/kg	DETS 068*				< 0.01
1,3-dichlorobenzene+p-isopropyltoluene	mg/kg	DETS 068*				< 0.01
1,4-dichlorobenzene	mg/kg	DETS 068*				< 0.01
n-butylbenzene	mg/kg	DETS 068*				< 0.01
1,2-dichlorobenzene	mg/kg	DETS 068*				< 0.01
1,2-dibromo-3-chloropropane	mg/kg	DETS 068*				< 0.01
1,2,4-trichlorobenzene	mg/kg	DETS 068*				< 0.01
Hexachlorobutadiene	mg/kg	DETS 068*				< 0.01
Naphthalene	mg/kg	DETS 068*				< 0.01
1,2,3-trichlorobenzene	mg/kg	DETS 068*				< 0.01
Trichloroethylene	mg/kg	DETS 068*				< 0.01
Chloroform	mg/kg	DETS 068*				< 0.01
Bromochloromethane	mg/kg	DETS 068*				< 0.01
2,2-dichlororopane+1,2-dichloroethylene	mg/kg	DETS 068*				< 0.01
1,1-dichloroethane	mg/kg	DETS 068*				< 0.01
1,2-dichloroethane	mg/kg	DETS 068*				< 0.01
Benzene	mg/kg	DETS 068*				< 0.01
Carbon tetrachloride + 1,1-dichloropropene	mg/kg	DETS 068*				< 0.01
Trans-1,2-dichloroethylene	mg/kg	DETS 068*				< 0.01
Methylene Chloride	mg/kg	DETS 068*				< 0.01
1,1 Dichloroethylene	mg/kg	DETS 068*				< 0.01
1,1,1-trichloroethane	mg/kg	DETS 068*				< 0.01

		Lab No.	115742	115743	115744	115745
		Sample Ref	TP12	TP13	TP13	TP15
		Depth	2.20	0.20	0.30	0.20
		Other Ref				
		Sample Type				
Test	Units	DETSxx				
Arsenic	mg/kg	DETS 042#	28	9	6	8
Cadmium	mg/kg	DETS 042	1.3	0.6	0.5	0.9
Chromium	mg/kg	DETS 042	23	17	19	17
Copper	mg/kg	DETS 042	48	14	15	12
Lead	mg/kg	DETS 042	57	41	16	43
Mercury	mg/kg	DETS 081*	< 0.3	< 0.3	< 0.3	< 0.3
Nickel	mg/kg	DETS 042	44	12	14	15
Selenium	mg/kg	DETS 042	< 0.3	< 0.3	< 0.3	< 0.3
Zinc	mg/kg	DETS 042#	120	47	32	60
Boron (water soluble)	mg/kg	DETS 020#	0.8	1.3	0.7	1.0
Cyanide free	mg/kg	DETS 067#	< 0.1	0.3	< 0.1	0.2
Sulphate Aqueous Extract as SO4	g/l	DETS 076#	0.03	0.02	0.01	0.02
рН		DETS 008#	8.3	7.9	8.1	8.0
Aliphatic C5-C6	mg/kg	DETS 072*				
Aliphatic C6-C8	mg/kg	DETS 072*				
Aliphatic C8-C10	mg/kg	DETS 072*				
Aliphatic C10-C12	mg/kg	DETS 072*				
Aliphatic C12-C16	mg/kg	DETS 072*				
Aliphatic C16-C21	mg/kg	DETS 072*				
Aliphatic C21-C35	mg/kg	DETS 072*				
Aromatic C5-C7	mg/kg	DETS 072*				
Aromatic C7-C8	mg/kg	DETS 072*				
Aromatic C8-C10	mg/kg	DETS 072*				
Aromatic C10-C12	mg/kg	DETS 072*				
Aromatic C12-C16	mg/kg	DETS 072*				
Aromatic C16-C21	mg/kg	DETS 072*				
Aromatic C21-C35	mg/kg	DETS 072*				
Aliphatic C5-C35	mg/kg	DETS 072*				
Aromatic C5-C35	mg/kg	DETS 072*				
TPH Ali/Aro	mg/kg	DETS 072*				

Sample Ref TP12 TP13 TP13 TP13 TP13 TP13 TP13 D014 Dopth P Ref 2.00 0.20 0.20 0.20 0.20 0.20 Test DETS 80 0.1 < 0.1			Lab No.	115742	115743	115744	115745
Same Type Same Type Text Vertext Text Vertext Acomaphitymen Mg/kg DETS 050 0.01 0			Sample Ref	TP12	TP13	TP13	TP15
Test Sample Type Test DETSxx Aconaphthene mg/kg DETS 050 0.1 < 0.1 < 0.1 < 0.1 Aconaphtylene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 Anthracene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1<			•	2.20	0.20	0.30	0.20
Test Units DETSxr Acenaphthene mg/kg DETS 050 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1							
Acenaphthene mg/kg DETS 050 0.1 < 0.1							
Acenapthylene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 Anthracene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 Benzo(a)apyrene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 Benzo(b)lluoranthene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 Benzo(b)luoranthene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 Benzo(b)luoranthene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 Benzo(b)luoranthene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 Dibenzo(a,h)anthracene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 Fluorene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 Indeno12,3.4.c/byrene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 Phenanthrene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 Phenanthrene mg/kg							
Anthracene mg/kg DETS 050 < 0.1	-						
Benzo(a)anthracene mg/kg DETS 050 < 0.1							
Benzo(a)pyrane mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 Benzo(h)uoranthene mg/kg DETS 050 < 0.1							
Benza(b)!luoranthene mg/kg DETS 050 < 0.1	Benzo(a)anthracene						
Benzo(k)/luoranthene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.							
Benzo(g,hi)perylene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1							
Chrysene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 Diberzo(a,h)anthracene mg/kg DETS 050 < 0.1			DETS 050	< 0.1		< 0.1	< 0.1
Dibenzo(a,h)anthracene mg/kg DETS 050 < 0.1 0.4 < 0.1 < 0.1 Fluoranthene mg/kg DETS 050 0.1 < 0.1	Benzo(g,h,i)perylene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Fluoranthene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 Fluorene mg/kg DETS 050 0.1 < 0.1	Chrysene	mg/kg	DETS 050			< 0.1	
Fluorene mg/kg DETS 050 0.1 < 0.1 < 0.1 < 0.1 Indenci (1,2,3-c,d)pyrene mg/kg DETS 050 < 0.1		mg/kg	DETS 050	< 0.1		< 0.1	
Indeno(1,2,3-c,d)pyrene mg/kg DETS 050 < 0.1	Fluoranthene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Naphtalene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 Phenanthrene mg/kg DETS 050 < 0.1	Fluorene	mg/kg	DETS 050	0.1	< 0.1	< 0.1	< 0.1
Phenanthrene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 Pyrene mg/kg DETS 050 < 0.1	Indeno(1,2,3-c,d)pyrene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Pyrene mg/kg DETS 050 < 0.1 < 0.1 < 0.1 < 0.1 PAH mg/kg DETS 050 < 5.0	Napthalene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
PAH mg/kg DETS 050 < 5.0	Phenanthrene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Benzene mg/kg DETS 062# Ethylbenzene mg/kg DETS 062# Toluene mg/kg DETS 062# Xylene mg/kg DETS 062# Phenol - Monohydric mg/kg DETS 062# Phenol - Monohydric mg/kg DETS 067# < 0.3	Pyrene	mg/kg	DETS 050	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene mg/kg DETS 062# Toluene mg/kg DETS 062# Xylene mg/kg DETS 062# Phenol - Monohydric mg/kg DETS 062# Phenol - Monohydric mg/kg DETS 062# PCB mg/kg DETS 052* 2.2',4.4',5.5'-Hexachlorobiphenyl PCB 153 mg/kg DETS 052* 2.2',3.4.4',5.5'-Heptachlorobiphenyl PCB 180 mg/kg DETS 052* 2.2',3.4.4',5'-Hexachlorobiphenyl PCB 183 mg/kg DETS 052* 2.2',3.5'-Tetrachlorobiphenyl PCB 138 mg/kg DETS 052* 2.2',4.5'-Fentachlorobiphenyl PCB 138 mg/kg DETS 052* 2.2',5.5'-Tetrachlorobiphenyl PCB 138 mg/kg DETS 052* 2.2',5.5'-Tetrachlorobiphenyl PCB 138 mg/kg DETS 052* 2.2',5.5'-Tetrachlorobiphenyl PCB 138 mg/kg DETS 068* 1,2-dichloropropane <t< td=""><td>PAH</td><td>mg/kg</td><td>DETS 050</td><td>< 5.0</td><td>< 5.0</td><td>< 5.0</td><td>< 5.0</td></t<>	PAH	mg/kg	DETS 050	< 5.0	< 5.0	< 5.0	< 5.0
Toluene mg/kg DETS 062# Xylene mg/kg DETS 062# Phenol - Monohydric mg/kg DETS 067# < 0.3	Benzene	mg/kg	DETS 062#				
Xylene mg/kg DETS 062# Phenol - Monohydric mg/kg DETS 067# < 0.3	Ethylbenzene	mg/kg	DETS 062#				
Phenol - Monohydric mg/kg DETS 067# < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.	Toluene	mg/kg	DETS 062#				
PCBmg/kgDETS 052*2,2',4,4',5,5'-Hexachlorobiphenyl PCB 153mg/kgDETS 052*2,3',4,4',5-Pentachlorobiphenyl PCB 118mg/kgDETS 052*2,2',3,4,4',5-Hexachlorobiphenyl PCB 180mg/kgDETS 052*2,2',3,4,4',5'-Hexachlorobiphenyl PCB 180mg/kgDETS 052*2,2',3,4,4',5'-Hexachlorobiphenyl PCB 180mg/kgDETS 052*2,2',4,5,5'-Pentachlorobiphenyl PCB 101mg/kgDETS 052*2,2',4,5,5'-Pentachlorobiphenyl PCB 28mg/kgDETS 052*2,2',5,5'-Tetrachlorobiphenyl PCB 52mg/kgDETS 068*1,2-dichloropipanelmg/kgDETS 068*1,2-dichloropropanemg/kgDETS 068*Dibromomethanemg/kgDETS 068*1,3-dichloropropenemg/kgDETS 068*1,1,2-tirchloroethanemg/kgDETS 068*1,3-dichloropropenemg/kgDETS 068*1,3-dichloropropenemg/kgDETS 068*1,3-dichloropropenemg/kgDETS 068*1,3-dichloropropenemg/kgDETS 068*1,3-dichloropropenemg/kgDETS 068*1,3-dichloropropenemg/kgDETS 068*1,3-dichloropropenemg/kgDETS 068*1,3-dichloropropenemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*1,3-dichloropropane <td>Xylene</td> <td>mg/kg</td> <td>DETS 062#</td> <td></td> <td></td> <td></td> <td></td>	Xylene	mg/kg	DETS 062#				
2.2',4,4',5,5'-Hexachlorobiphenyl PCB 153mg/kgDETS 052*2,3',4,4',5-Pentachlorobiphenyl PCB 118mg/kgDETS 052*2,2',3,4,4',5-'Hexachlorobiphenyl PCB 180mg/kgDETS 052*2,2',3,4,4',5'-Hexachlorobiphenyl PCB 138mg/kgDETS 052*2,2',4,4,5,5'-Pentachlorobiphenyl PCB 101mg/kgDETS 052*2,2',4,5,5'-Pentachlorobiphenyl PCB 28mg/kgDETS 052*2,2',5,5'-Tetrachlorobiphenyl PCB 52mg/kgDETS 052*7otal VOC'smg/kgDETS 068*Dibromomethanemg/kgDETS 068*Dibromomethanemg/kgDETS 068*Toluenemg/kgDETS 068*1,1,2-tirchlorobiphenemg/kgDETS 068*1,1,2-tirchloropopanemg/kgDETS 068*1,1,2-tirchloropopanemg/kgDETS 068*1,1,2-tirchloropopanemg/kgDETS 068*1,1,2-tirchloropopanemg/kgDETS 068*1,1,2-tirchloropopanemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*1,3-dichloropropanemg/kg <t< td=""><td>Phenol - Monohydric</td><td>mg/kg</td><td>DETS 067#</td><td>< 0.3</td><td>< 0.3</td><td>< 0.3</td><td>< 0.3</td></t<>	Phenol - Monohydric	mg/kg	DETS 067#	< 0.3	< 0.3	< 0.3	< 0.3
2,3',4,4',5-Pentachlorobiphenyl PCB 118mg/kgDETS 052*2,2',3,4,4',5-Hexachlorobiphenyl PCB 180mg/kgDETS 052*2,2',3,4,4',5'-Hexachlorobiphenyl PCB 138mg/kgDETS 052*2,2',4,5,5'-Pentachlorobiphenyl PCB 101mg/kgDETS 052*2,4,4'-Trichlorobiphenyl PCB 28mg/kgDETS 052*2,2',5,5'-Tetrachlorobiphenyl PCB 52mg/kgDETS 052*2,2',5,5'-Tetrachlorobiphenyl PCB 52mg/kgDETS 068*1,2-dichloropropanemg/kgDETS 068*Dibromomethanemg/kgDETS 068*Toluenemg/kgDETS 068*Toluenemg/kgDETS 068*1,1,2-trichloroptopenemg/kgDETS 068*1,1,2-trichloroptopenemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*1,1,2-trichloroptopenemg/kgDETS 068*1,1,2-trichloroptopenemg/kgDETS 068*1,1,2-trichloroptopenemg/kgDETS 068*1,1,2-trichloroptopenemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*	PCB	mg/kg	DETS 052*				
2,2',3,4,4',5,5'-Heptachlorobiphenyl PCB 180mg/kgDETS 052*2,2',3,4,4',5'-Hexachlorobiphenyl PCB 138mg/kgDETS 052*2,2',4,5,5'-Pentachlorobiphenyl PCB 101mg/kgDETS 052*2,4,4'-Trichlorobiphenyl PCB 28mg/kgDETS 052*2,2',5,5'-Tetrachlorobiphenyl PCB 52mg/kgDETS 068*1,2-dichloropropanemg/kgDETS 068*Dibromomethanemg/kgDETS 068*cis-1,3-dichloropropenemg/kgDETS 068*Toluenemg/kgDETS 068*1,1,2-trichloroethanemg/kgDETS 068*1,1,2-trichloroethanemg/kgDETS 068*1,3-dichloropropenemg/kgDETS 068*1,3-dichloropropenemg/kgDETS 068*1,3-dichloroptopenemg/kgDETS 068*Dibromochloromethanemg/kgDETS 068*1,2-dibromochloromethanemg/kgDETS 068*1,2-dibromochloromethanemg/kgDETS 068*	2,2',4,4',5,5'-Hexachlorobiphenyl PCB 153	mg/kg	DETS 052*				
2,2',3,4,4',5'-Hexachlorobiphenyl PCB 138mg/kgDETS 052*2,2',4,5,5'-Pentachlorobiphenyl PCB 101mg/kgDETS 052*2,4,4'-Trichlorobiphenyl PCB 28mg/kgDETS 052*2,2',5,5'-Tetrachlorobiphenyl PCB 52mg/kgDETS 052*Total VOC'smg/kgDETS 068*1,2-dichloropropanemg/kgDETS 068*Dibromomethanemg/kgDETS 068*Gis-1,3-dichloropropenemg/kgDETS 068*Toluenemg/kgDETS 068*1,1,2-trichloroethanemg/kgDETS 068*1,1,2-trichloroethanemg/kgDETS 068*1,3-dichloropropenemg/kgDETS 068*1,3-dichloropropenemg/kgDETS 068*1,1,2-trichloroethanemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*1,1,2-trichloroethanemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*Chlorobenzenemg/kgDETS 068*Ethylbenzene+1,1,1,2-tetrachloroethanemg/kgDETS 068*	2,3',4,4',5-Pentachlorobiphenyl PCB 118	mg/kg	DETS 052*				
2,2',4,5'.5'-Pentachlorobiphenyl PCB 101mg/kgDETS 052*2,4,4'-Trichlorobiphenyl PCB 28mg/kgDETS 052*2,2',5,5'-Tetrachlorobiphenyl PCB 52mg/kgDETS 068*1,2-dichloropropanemg/kgDETS 068*Dibromomethanemg/kgDETS 068*Bromodichloropropenemg/kgDETS 068*Toluenemg/kgDETS 068*1,1,2-trichloroptopenemg/kgDETS 068*1,1,2-trichloroptopenemg/kgDETS 068*1,1,2-trichloroptopenemg/kgDETS 068*1,1,2-trichloroptopenemg/kgDETS 068*1,1,2-trichloroptopenemg/kgDETS 068*1,3-dichloroptopenemg/kgDETS 068*1,3-dichloroptopenemg/kgDETS 068*1,1,2-trichloroethanemg/kgDETS 068*1,3-dichloroptopenemg/kgDETS 068*1,3-dichloroptopenemg/kgDETS 068*1,3-dichloroptopenemg/kgDETS 068*1,3-dichloroptopenemg/kgDETS 068*1,3-dichloroptopenemg/kgDETS 068*1,3-dichloroptopenemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*Chlorobenzenemg/kgDETS 068*Ethylbenzene+1,1,1,2-tetrachloroethanemg/kgDETS 068*	2,2',3,4,4',5,5'-Heptachlorobiphenyl PCB 180	mg/kg	DETS 052*				
2,4,4'-Trichlorobiphenyl PCB 28mg/kgDETS 052*2,2',5,5'-Tetrachlorobiphenyl PCB 52mg/kgDETS 068*Total VOC'smg/kgDETS 068*1,2-dichloropropanemg/kgDETS 068*Dibromomethanemg/kgDETS 068*Bromodichloromethanemg/kgDETS 068*Toluenemg/kgDETS 068*1,1,2-trichloropropenemg/kgDETS 068*1,1,2-trichloropropenemg/kgDETS 068*1,1,2-trichloroethanemg/kgDETS 068*1,3-dichloropropenemg/kgDETS 068*1,3-dichloropropenemg/kgDETS 068*1,1,2-trichloroethanemg/kgDETS 068*1,3-dichloropropenemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*Chlorobenzenemg/kgDETS 068*Ethylbenzene+1,1,1,2-tetrachloroethanemg/kgDETS 068*	2,2',3,4,4',5'-Hexachlorobiphenyl PCB 138	mg/kg	DETS 052*				
2,2',5,5'-Tetrachlorobiphenyl PCB 52mg/kgDETS 052*Total VOC'smg/kgDETS 068*1,2-dichloropropanemg/kgDETS 068*Dibromomethanemg/kgDETS 068*Bromodichloromethanemg/kgDETS 068*cis-1,3-dichloropropenemg/kgDETS 068*Toluenemg/kgDETS 068*1,1,2-trichloroethanemg/kgDETS 068*1,1,2-trichloroethanemg/kgDETS 068*1,1,2-trichloroethanemg/kgDETS 068*1,3-dichloropropenemg/kgDETS 068*1,3-dichloropropenemg/kgDETS 068*1,3-dichloropropenemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068* <td>2,2',4,5,5'-Pentachlorobiphenyl PCB 101</td> <td>mg/kg</td> <td>DETS 052*</td> <td></td> <td></td> <td></td> <td></td>	2,2',4,5,5'-Pentachlorobiphenyl PCB 101	mg/kg	DETS 052*				
Total VOC'smg/kgDETS 068*1,2-dichloropropanemg/kgDETS 068*Dibromomethanemg/kgDETS 068*Bromodichloromethanemg/kgDETS 068*cis-1,3-dichloropropenemg/kgDETS 068*Toluenemg/kgDETS 068*trans-1,3-dichloropropenemg/kgDETS 068*1,1,2-trichloroethanemg/kgDETS 068*1,1,2-trichloroethanemg/kgDETS 068*1,3-dichloropropenemg/kgDETS 068*1,3-dichloropropenemg/kgDETS 068*1,3-dichloropropenemg/kgDETS 068*1,3-dichloropropenemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*Chlorobenzenemg/kgDETS 068*Ethylbenzene+1,1,1,2-tetrachloroethanemg/kgDETS 068*	2,4,4'-Trichlorobiphenyl PCB 28	mg/kg	DETS 052*				
1,2-dichloropropanemg/kgDETS 068*Dibromomethanemg/kgDETS 068*Bromodichloromethanemg/kgDETS 068*cis-1,3-dichloropropenemg/kgDETS 068*Toluenemg/kgDETS 068*trans-1,3-dichloropropenemg/kgDETS 068*1,1,2-trichloropthanemg/kgDETS 068*1,1,2-trichloropthanemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*1,3-dichloropthanemg/kgDETS 068*1,3-dichloropthanemg/kgDETS 068*1,3-dichloropthanemg/kgDETS 068*1,3-dichloropthanemg/kgDETS 068*1,3-dichloropthanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*Chlorobenzenemg/kgDETS 068*Ethylbenzene+1,1,1,2-tetrachloroethanemg/kgDETS 068*	2,2',5,5'-Tetrachlorobiphenyl PCB 52	mg/kg	DETS 052*				
Dibromomethanemg/kgDETS 068*Bromodichloromethanemg/kgDETS 068*cis-1,3-dichloropropenemg/kgDETS 068*Toluenemg/kgDETS 068*trans-1,3-dichloropropenemg/kgDETS 068*1,1,2-trichloroethanemg/kgDETS 068*Tetrachloroethylenemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*Chlorobenzenemg/kgDETS 068*Ethylbenzene+1,1,1,2-tetrachloroethanemg/kgDETS 068*	Total VOC's	mg/kg	DETS 068*				
Bromodichloromethanemg/kgDETS 068*cis-1,3-dichloropropenemg/kgDETS 068*Toluenemg/kgDETS 068*trans-1,3-dichloropropenemg/kgDETS 068*1,1,2-trichloroethanemg/kgDETS 068*Tetrachloroethylenemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*Dibromochloromethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*Chlorobenzenemg/kgDETS 068*Ethylbenzene+1,1,1,2-tetrachloroethanemg/kgDETS 068*	1,2-dichloropropane	mg/kg	DETS 068*				
cis-1,3-dichloropropenemg/kgDETS 068*Toluenemg/kgDETS 068*trans-1,3-dichloropropenemg/kgDETS 068*1,1,2-trichloroethanemg/kgDETS 068*Tetrachloroethylenemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*Dibromochloromethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*Chlorobenzenemg/kgDETS 068*Ethylbenzene+1,1,1,2-tetrachloroethanemg/kgDETS 068*	Dibromomethane	mg/kg	DETS 068*				
Toluenemg/kgDETS 068*trans-1,3-dichloropropenemg/kgDETS 068*1,1,2-trichloroethanemg/kgDETS 068*Tetrachloroethylenemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*Dibromochloromethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*Chlorobenzenemg/kgDETS 068*Ethylbenzene+1,1,1,2-tetrachloroethanemg/kgDETS 068*	Bromodichloromethane	mg/kg	DETS 068*				
trans-1,3-dichloropropenemg/kgDETS 068*1,1,2-trichloroethanemg/kgDETS 068*Tetrachloroethylenemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*Dibromochloromethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*Chlorobenzenemg/kgDETS 068*Ethylbenzene+1,1,1,2-tetrachloroethanemg/kgDETS 068*	cis-1,3-dichloropropene	mg/kg	DETS 068*				
1,1,2-trichloroethanemg/kgDETS 068*Tetrachloroethylenemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*Dibromochloromethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*Chlorobenzenemg/kgDETS 068*Ethylbenzene+1,1,1,2-tetrachloroethanemg/kgDETS 068*	Toluene	mg/kg	DETS 068*				
Tetrachloroethylenemg/kgDETS 068*1,3-dichloropropanemg/kgDETS 068*Dibromochloromethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*Chlorobenzenemg/kgDETS 068*Ethylbenzene+1,1,1,2-tetrachloroethanemg/kgDETS 068*	trans-1,3-dichloropropene	mg/kg	DETS 068*				
1,3-dichloropropanemg/kgDETS 068*Dibromochloromethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*Chlorobenzenemg/kgDETS 068*Ethylbenzene+1,1,1,2-tetrachloroethanemg/kgDETS 068*	1,1,2-trichloroethane	mg/kg	DETS 068*				
Dibromochloromethanemg/kgDETS 068*1,2-dibromoethanemg/kgDETS 068*Chlorobenzenemg/kgDETS 068*Ethylbenzene+1,1,1,2-tetrachloroethanemg/kgDETS 068*	Tetrachloroethylene	mg/kg	DETS 068*				
1,2-dibromoethanemg/kgDETS 068*Chlorobenzenemg/kgDETS 068*Ethylbenzene+1,1,1,2-tetrachloroethanemg/kgDETS 068*	1,3-dichloropropane	mg/kg	DETS 068*				
Chlorobenzenemg/kgDETS 068*Ethylbenzene+1,1,1,2-tetrachloroethanemg/kgDETS 068*	Dibromochloromethane	mg/kg	DETS 068*				
Chlorobenzenemg/kgDETS 068*Ethylbenzene+1,1,1,2-tetrachloroethanemg/kgDETS 068*	1,2-dibromoethane	mg/kg	DETS 068*				
	Chlorobenzene		DETS 068*				
m+p-Xylene ma/kg DETS 068*	Ethylbenzene+1,1,1,2-tetrachloroethane	mg/kg	DETS 068*				
	m+p-Xylene	mg/kg	DETS 068*				

		Lab No.	115742	115743	115744	115745
		Sample Ref	TP12	TP13	TP13	TP15
		Depth	2.20	0.20	0.30	0.20
		Other Ref				
		Sample Type				
Test	Units	DETSxx				
o-Xylene	mg/kg	DETS 068*				
Styrene	mg/kg	DETS 068*				
Bromoform	mg/kg	DETS 068*				
Isopropylbenzene	mg/kg	DETS 068*				
Bromobenzene	mg/kg	DETS 068*				
1,2,3-trichloropropane	mg/kg	DETS 068*				
n-propylbenzene	mg/kg	DETS 068*				
2-chlorotoluene	mg/kg	DETS 068*				
1,3,5-trimethylbenzene	mg/kg	DETS 068*				
4-chlorotoluene	mg/kg	DETS 068*				
Tert-butylbenzene	mg/kg	DETS 068*				
1,2,4-trimethylbenzene	mg/kg	DETS 068*				
sec-butylbenzene	mg/kg	DETS 068*				
1,3-dichlorobenzene+p-isopropyltoluene	mg/kg	DETS 068*				
1,4-dichlorobenzene	mg/kg	DETS 068*				
n-butylbenzene	mg/kg	DETS 068*				
1,2-dichlorobenzene	mg/kg	DETS 068*				
1,2-dibromo-3-chloropropane	mg/kg	DETS 068*				
1,2,4-trichlorobenzene	mg/kg	DETS 068*				
Hexachlorobutadiene	mg/kg	DETS 068*				
Naphthalene	mg/kg	DETS 068*				
1,2,3-trichlorobenzene	mg/kg	DETS 068*				
Trichloroethylene	mg/kg	DETS 068*				
Chloroform	mg/kg	DETS 068*				
Bromochloromethane	mg/kg	DETS 068*				
2,2-dichlororopane+1,2-dichloroethylene	mg/kg	DETS 068*				
1,1-dichloroethane	mg/kg	DETS 068*				
1,2-dichloroethane	mg/kg	DETS 068*				
Benzene	mg/kg	DETS 068*				
Carbon tetrachloride + 1,1-dichloropropene	mg/kg	DETS 068*				
Trans-1,2-dichloroethylene	mg/kg	DETS 068*				
Methylene Chloride	mg/kg	DETS 068*				
1,1 Dichloroethylene	mg/kg	DETS 068*				
1,1,1-trichloroethane	mg/kg	DETS 068*				

		Lab No.	115746
		Sample Ref	TP15
		Depth	0.30
		Other Ref	
		Sample Type	
Test	Units	DETSxx	
Arsenic	mg/kg	DETS 042#	7
Cadmium	mg/kg	DETS 042	0.9
Chromium	mg/kg	DETS 042	19
Copper	mg/kg	DETS 042	14
Lead	mg/kg	DETS 042	18
Mercury	mg/kg	DETS 081*	< 0.3
Nickel	mg/kg	DETS 042	20
Selenium	mg/kg	DETS 042	< 0.3
Zinc	mg/kg	DETS 042#	51
Boron (water soluble)	mg/kg	DETS 020#	0.5
Cyanide free	mg/kg	DETS 067#	< 0.1
Sulphate Aqueous Extract as SO4	g/l	DETS 076#	0.01
pH		DETS 008#	8.4
Aliphatic C5-C6	mg/kg	DETS 072*	
Aliphatic C6-C8	mg/kg	DETS 072*	
Aliphatic C8-C10	mg/kg	DETS 072*	
Aliphatic C10-C12	mg/kg	DETS 072*	
Aliphatic C12-C16	mg/kg	DETS 072*	
Aliphatic C16-C21	mg/kg	DETS 072*	
Aliphatic C21-C35	mg/kg	DETS 072*	
Aromatic C5-C7	mg/kg	DETS 072*	
Aromatic C7-C8	mg/kg	DETS 072*	
Aromatic C8-C10	mg/kg	DETS 072*	
Aromatic C10-C12	mg/kg	DETS 072*	
Aromatic C12-C16	mg/kg	DETS 072*	
Aromatic C16-C21	mg/kg	DETS 072*	
Aromatic C21-C35	mg/kg	DETS 072*	
Aliphatic C5-C35	mg/kg	DETS 072*	
Aromatic C5-C35	mg/kg	DETS 072*	
TPH Ali/Aro	mg/kg	DETS 072*	

		Lab No. Sample Ref	115746 TP15
		Depth	0.30
		Other Ref	
		Sample Type	
Test	Units	DETSxx	
Acenaphthene	mg/kg	DETS 050	< 0.1
Acenapthylene	mg/kg	DETS 050	< 0.1
Anthracene	mg/kg	DETS 050	< 0.1
Benzo(a)anthracene	mg/kg	DETS 050	< 0.1
Benzo(a)pyrene	mg/kg	DETS 050	< 0.1
Benzo(b)fluoranthene	mg/kg	DETS 050	< 0.1
Benzo(k)fluoranthene	mg/kg	DETS 050	< 0.1
Benzo(g,h,i)perylene	mg/kg	DETS 050	< 0.1
Chrysene	mg/kg	DETS 050	< 0.1
Dibenzo(a,h)anthracene	mg/kg	DETS 050	< 0.1
Fluoranthene	mg/kg	DETS 050	< 0.1
Fluorene	mg/kg	DETS 050	0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	DETS 050	< 0.1
Napthalene	mg/kg	DETS 050	0.1
Phenanthrene	mg/kg	DETS 050	< 0.1
Pyrene	mg/kg	DETS 050	< 0.1
PAH	mg/kg	DETS 050	< 5.0
Benzene	mg/kg	DETS 062#	
Ethylbenzene	mg/kg	DETS 062#	
Toluene	mg/kg	DETS 062#	
Xylene	mg/kg	DETS 062#	
Phenol - Monohydric	mg/kg	DETS 067#	< 0.3
PCB	mg/kg	DETS 052*	
2,2',4,4',5,5'-Hexachlorobiphenyl PCB 153	mg/kg	DETS 052*	
2,3',4,4',5-Pentachlorobiphenyl PCB 118	mg/kg	DETS 052*	
2,2',3,4,4',5,5'-Heptachlorobiphenyl PCB 180	mg/kg	DETS 052*	
2,2',3,4,4',5'-Hexachlorobiphenyl PCB 138	mg/kg	DETS 052*	
2,2',4,5,5'-Pentachlorobiphenyl PCB 101	mg/kg	DETS 052*	
2,4,4'-Trichlorobiphenyl PCB 28	mg/kg	DETS 052*	
2,2',5,5'-Tetrachlorobiphenyl PCB 52	mg/kg	DETS 052*	
Total VOC's	mg/kg	DETS 068*	
1,2-dichloropropane	mg/kg	DETS 068*	
Dibromomethane	mg/kg	DETS 068*	
Bromodichloromethane	mg/kg	DETS 068*	
cis-1,3-dichloropropene	mg/kg	DETS 068*	
Toluene	mg/kg	DETS 068*	
trans-1,3-dichloropropene	mg/kg	DETS 068*	
1,1,2-trichloroethane	mg/kg	DETS 068*	
Tetrachloroethylene	mg/kg	DETS 068*	
1,3-dichloropropane	mg/kg	DETS 068*	
Dibromochloromethane	mg/kg	DETS 068*	
1,2-dibromoethane	mg/kg	DETS 068*	
Chlorobenzene	mg/kg	DETS 068*	
Ethylbenzene+1,1,1,2-tetrachloroethane	mg/kg	DETS 068*	
m+p-Xylene	mg/kg	DETS 068*	

		Lab No. Sample Ref Depth Other Ref Sample Type	115746 TP15 0.30
Test	Units	DETSxx	
o-Xylene	mg/kg	DETS 068*	
Styrene	mg/kg	DETS 068*	
Bromoform	mg/kg	DETS 068*	
Isopropylbenzene	mg/kg	DETS 068*	
Bromobenzene	mg/kg	DETS 068*	
1,2,3-trichloropropane	mg/kg	DETS 068*	
n-propylbenzene	mg/kg	DETS 068*	
2-chlorotoluene	mg/kg	DETS 068*	
1,3,5-trimethylbenzene	mg/kg	DETS 068*	
4-chlorotoluene	mg/kg	DETS 068*	
Tert-butylbenzene	mg/kg	DETS 068*	
1,2,4-trimethylbenzene	mg/kg	DETS 068*	
sec-butylbenzene	mg/kg	DETS 068*	
1,3-dichlorobenzene+p-isopropyltoluene	mg/kg	DETS 068*	
1,4-dichlorobenzene	mg/kg	DETS 068*	
n-butylbenzene	mg/kg	DETS 068*	
1,2-dichlorobenzene	mg/kg	DETS 068*	
1,2-dibromo-3-chloropropane	mg/kg	DETS 068*	
1,2,4-trichlorobenzene	mg/kg	DETS 068*	
Hexachlorobutadiene	mg/kg	DETS 068*	
Naphthalene	mg/kg	DETS 068*	
1,2,3-trichlorobenzene	mg/kg	DETS 068*	
Trichloroethylene	mg/kg	DETS 068*	
Chloroform	mg/kg	DETS 068*	
Bromochloromethane	mg/kg	DETS 068*	
2,2-dichlororopane+1,2-dichloroethylene	mg/kg	DETS 068*	
1,1-dichloroethane	mg/kg	DETS 068*	
1,2-dichloroethane	mg/kg	DETS 068*	
Benzene	mg/kg	DETS 068*	
Carbon tetrachloride + 1,1-dichloropropene	mg/kg	DETS 068*	
Trans-1,2-dichloroethylene	mg/kg	DETS 068*	
Methylene Chloride	mg/kg	DETS 068*	
1,1 Dichloroethylene	mg/kg	DETS 068*	
1,1,1-trichloroethane	mg/kg	DETS 068*	

CERTIFICATE OF ANALYSIS

Certificate Number : 08-17123_M01

Client Reference :	40274	13/02/2008
Our Reference :	08-17123	
Clients Name : Clients Address:	Ian Farmer Associates 17 Rivington Court Hardwick Grange Woolston Warrington Cheshire	
Contract Title :	Warren Hall	
Description :	7 Soil Samples, 7 Leachate Samples	
Date Received : Date Commenced : Date Completed :	04/02/2008 04/02/2008 13/02/2008	
Test Procedures :	Identified by Prefix DETSn, Details available upon request.	
Notes :	* Denotes test not included in laboratory scope of accreditation Observations and Interpretations are Outside the UKAS Accreditation Scope Samples will be disposed of 1 month after the date of issue of test certificate.	

Approved By:

Authorised Signatories R Bennett Director

t R Brown Business Manager M Hopgood Technical Manager

Page 1 of 12

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material received by the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Certificate of Analysis

Date: 19/02/2008 Certificate Number: 08-17279 2139 Client: Ian Farmer Associates 17 Rivington Court Hardwick Grange Woolston Warrington Cheshire WA1 4RT Our Reference: 08-17279 Client Reference: 40274 Contract Title: Warren Hall Description: 6 water samples Date Received: 08/02/2008 Date Started: 08/02/2008 Date Completed: 19/02/2008 **Test Procedures:** Identified by prefix DETSn, details available upon request. Notes: Observations and interpretations are outside the scope of UKAS accreditation * denotes test not included in laboratory scope of accreditation # denotes test that holds MCERT accreditation \$ denotes tests completed by approved subcontractors I/S denotes insufficient sample to carry out test N/S denotes that the sample is not suitable for testing Solid samples will be disposed 1 month and liquids 2 weeks after the date of issue of this test certificate

Approved By:

Kenell

Authorised Signatories:

Richard Bennett Director

Page 1 of 2

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Summary of Chemical Analysis Water Samples

		Lab No.	117200	117201	117202	117203	117204	117205
		Sample Ref	BH02	BH03	BH04	BH09	BH11	BH13
		Depth						
		Other Ref						
		Sample Type						
Test	Units	DETSxx						
Arsenic Dissolved	ug/l	DETS 010	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium Dissolved	ug/l	DETS 042	< 2	< 2	< 2	< 2	< 2	< 2
Chromium Dissolved	ug/l	DETS 042	< 10	< 10	< 10	< 10	< 10	< 10
Copper Dissolved	ug/l	DETS 042	2	4	2	3	2	2
Lead Dissolved	ug/l	DETS 042	< 5	< 5	< 5	< 5	< 5	< 5
Mercury Dissolved	ug/l	DETS 078*	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel Dissolved	ug/l	DETS 042	< 10	< 10	< 10	< 10	< 10	< 10
Selenium Dissolved	ug/l	DETS 017	< 3	< 3	< 3	< 3	< 3	< 3
Zinc Dissolved	ug/l	DETS 042	15	16	79	42	18	33
Sulphate	mg/l	DETS 055	150	78	89	49	64	130
Boron	ug/l	DETS 020	< 100	< 100	< 100	< 100	< 100	< 100
Cyanide total	ug/l	DETS 067	< 40	< 40	< 40	< 40	< 40	< 40
Hardness	mg/l	DETS 043*	360	290	330	310	470	370
Sulphur (free)	ug/l	DETS 049	< 90	< 90	< 90	< 90	< 90	< 90
pН		DETS 008	7.5	7.5	7.4	7.4	7.4	7.5
Acenaphthene	ug/l	DETS 074*	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenapthylene	ug/l	DETS 074*	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	ug/l	DETS 074*	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	ug/l	DETS 074*	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	ug/l	DETS 074*	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	ug/l	DETS 074*	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	ug/l	DETS 074*	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(g,h,i)perylene	ug/l	DETS 074*	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	ug/l	DETS 074*	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo(a,h)anthracene	ug/l	DETS 074*	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	ug/l	DETS 074*	< 0.01	< 0.01	< 0.01	0.02	< 0.01	< 0.01
Fluorene	ug/l	DETS 074*	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-c,d)pyrene	ug/l	DETS 074*	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Napthalene	ug/l	DETS 074*	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01
Phenanthrene	ug/l	DETS 074*	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	ug/l	DETS 074*	< 0.01	0.02	0.02	0.07	0.01	0.05
PAH	ug/l	DETS 074*	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
PRO (C6-C10)	ug/l	DETS 062*	< 1	< 1	< 1	< 1	< 1	< 1
TPH (C10-C14)	ug/l	DETS 051	< 10	< 10	< 10	< 10	< 10	< 10
TPH (C15-C36)	ug/l	DETS 051	11	< 10	18	87	10	10
TPH (C10-C40)	ug/l	DETS 051	11	< 10	18	87	10	10

APPENDIX 5

GAS AND GROUNDWATER MONITORING

Gas and Groundwater Monitoring Results

Geotechnical & Environmental Specialists
Contract Number: W08 40274
Contract Name: Warren Hall Site, Broughton

Contra	ct Name:			0	nton						
	Date:	te: 1st February 2008									
			O ₂ %	19.3	CO ₂ %	0.0	$CH_4\%$	0.0	H₂S	0.0	
			v/v		v/v		v/v		ppm		
Background Readings:				We	eather Co	nditions:			Snowing		
Zuengro			Ground	Condition	ons (dry /	wet etc)			Wet		
			Atı	mospher	ic Pressu	re (Start)			990mb		
			Atm	ospheric	Pressure	(Finish)			990mb		
									Gas	D 1	
	O ₂ %			H ² S	flow Rate	Depth to base					
Hole No:	VOC	v/v	CO_2	‰v/v	CH ₄	% v/v	LEL	ppm	(l/hr)	of well	SWL
	ppm	Steady	Stea	ady	Peak	Steady	Steady	Steady	Range	mBGL	mBGL
BH01		20.3	0.	6	0.0	0.0	0.0	0.0	0.0	3.40	1.00
BH02		18.0	3.	9	0.0	0.0	0.0	0.0	0.4	3.20	0.70
BH03		20.4	0	4	0.0	0.0	0.0	0.0	0.0	5.70	2.00
BH04		20.8	0.0		0.0	0.0	0.0	0.0	0.0	12.0	2.40
BH05		20.8	.8 0.1		0.0	0.0	0.0	0.0	-0.2	7.90	1.70
BH06					Ι	nstallatio	n damag	ed			
BH07		19.7	1.	5	0.0	0.0	0.0	0.0	0.0	10.90	1.70
BH08		19.7	0.	5	0.0	0.0	0.0	0.0	0.0	11.90	2.40
BH09		20.9	0.	0	0.0	0.0	0.0	0.0	0.0	10.40	3.00
BH10		21.3	0.	0	0.0	0.0	0.0	0.0	0.0	3.90	0.40
BH11		21.2	0.	0	0.0	0.0	0.0	0.0	0.0	6.70	1.00
BH12		5.0	4.	1	0.0	0.0	>>>>	0.0	0.3	4.60	1.00
BH13											
BH14											
BH15											
BH16											
BH17											
Remarks:											
>>>> = Flow abo	ove detection li	imit of 30 l/h	r, <<< = Nega	tive flow gre	ater than -10	l/hr.					
Readings T	aken By:					(CR				
Checked By	-	1									

Gas and Groundwater Monitoring Results

Geotechnical & Environmental Specialists Contract Number: W08 40274

Contract 1	Number:	W08 40	274								
Contra	Warren	Hall Site	e, Brough	nton							
	Date:	1st Feb	ruary 200	08							
			$O_2\%$	19.3	CO ₂ %	0.0	CH ₄ %	0.0	H₂S	0.0	
			v/v	19.3	v/v	0.0	v/v	0.0	ppm	0.0	
Deckaround Decdinger				Weather Conditions:							
Background Readings:		ings.	Ground	Conditio	ons (dry /	wet etc)					
			At	mospher	ic Pressu	e (Start)					
			Atm	ospheric	Pressure	(Finish)					
									Gas		
								**00	flow	Depth	
TT 1 NT	NOC	O ₂ %	G O (~ /	GU	,	I DI	H ² S	Rate	to base	CILI
Hole No:	VOC	v/v	CO ₂ e		CH ₄		LEL	ppm	(l/hr)	of well	SWL
	ppm	Steady	Ste	ady	Peak	Steady	Steady	Steady	Range	mBGL	mBGL
BH13		19.6	0.	7	0.0	0.0	0.0	0.0	0.0	3.80	1.00
BH14			FLOODED								
BH15						FLO	ODED				
BH16		21.3	0.	0	0.0	0.0	0.0	0.0	0.0	6.0	1.00
BH17						FLO	ODED				
Remarks: Installation damaged											
>>>> = Flow above detection limit of 30 l/hr, <<< = Negative flow greater than -10 l/hr.											
Readings T	aken By:					(CR				
Checked By	/:										

Gas and Groundwater Monitoring Results

Geotechnical & Environmental Specialists
Contract Number: W08 40274

Contract	Number:	W08 40274									
Contra	ct Name:	Warren Hall Site, Broughton									
	Date:	15th Fe	15th February 2008								
i			O ₂ % v/v	21.5	CO ₂ % v/v	0.0	CH ₄ % v/v	0.0	H₂S ppm	0.0	
				We	eather Co	nditions:			Cloudy		
Backgro	und Read	ings:	Ground	Conditi	ons (dry /	wet etc)			Wet		
					ic Pressu				1035mb		
				•		(Finish)			1038mb		
Hole No:	VOC	O ₂ % v/v	CO ₂ °	7 70 v I v	CH	% v/v	LEL	H²S ppm	Gas flow Rate (l/hr)	Depth to base of well	SWL
	ppm	Steady	Ste		Peak	Steady	Steady	Steady	Range	mBGL	mBGL
BH01		21.4	0.	0	0.0	0.0	0.0	0.0	0.0	3.40	1.00
BH02		22.0	0.		0.0	0.0	0.0	0.0	0.1	3.20	1.00
BH03		21.3	0.	0	0.0	0.0	0.0	0.0	0.0	5.70	1.60
BH04		22.0	0.	0	0.0	0.0	0.0	0.0	0.0	12.0	2.00
BH05		21.6	0.	0	0.0	0.0	0.0	0.0	0.2	7.90	1.40
BH06					I	nstallatio	n damag	ed	-	-	-
BH07		20.4	1.	0	0.0	0.0	0.0	0.0	0.0	10.90	1.50
BH08		20.3	0.	3	0.0	0.0	0.0	0.0	0.0	11.90	2.70
BH09		21.0	0.	0	0.0	0.0	0.0	0.0	0.0	10.40	3.50
BH10		22.0	0.	0	0.0	0.0	0.0	0.0	0.0	3.90	0.40
BH11		21.5	0.	0	0.0	0.0	0.0	0.0	0.0	6.70	2.00
BH12		21.8	0.	0	0.0	0.0	0.0	0.0	0.0	4.60	2.30
BH13		20.2	0.	6	0.0	0.0	0.0	0.0	0.0	3.80	2.00
BH14		22.1	0.	0	0.0	0.0	0.0	0.0	0.0	2.20	0.30
BH15		21.5	0.	0	0.0	0.0	0.0	0.0	0.0	10.0	1.00
BH16		21.4	0.	0	0.0	0.0	0.0	0.0	0.0	6.0	0.80
BH17		21.9	0.	0	0.0	0.0	0.0	0.0	0.0	7.80	0.30
	Remarks: >>>> = Flow above detection limit of 30 l/hr, <<< = Negative flow greater than -10 l/hr.										
Checked By	-										
Sheeked D	,-										

WELSH ASSEMBLY GOVERNMENT

WARREN HALL, BROUGHTON

INTERPRETATIVE REPORT ON GROUND INVESTIGATION: DEVELOPMENT PLATEAUS

Contract: W08/40274-3

Date: March 2008

Ian Farmer Associates (1998) Limited 17 Rivington Court, Warrington, Cheshire, WA1 4RT Tel: 01925 855 440 Fax: 01925 855 441

INTERPRETATIVE REPORT ON GROUND INVESTIGATION: DEVELOPMENT PLATEAUS

carried out at

WARREN HALL,

BROUGHTON

Prepared for

WELSH ASSEMBLY . Unit 7 Ffordd Richard Davies St Asaph Business Park St Asaph LL17 0LJ

Contract No: W08/40274-3

Date: March 2008

Ian Farmer Associates (1998) Limited 17 Rivington Court, Warrington, Cheshire, WA1 4RT Tel: 01925 855 440 Fax: 01925 855 441

EXECUTIVE SUMMARY

On the instructions of Opus Consulting Engineers, on behalf of Welsh Assembly Government, an interpretative report has been prepared to discuss the geotechnical and contamination issues relating to the Warren Hall development area.

The site comprises an area of agricultural grazing land of about 34 hectares with topography falling towards the east.

Site preparation proposals comprise large-scale cut and fill earthworks. Office construction is planned for the development platforms created.

Geological records and a series of ground investigations have established the ground conditions as clay with subordinate sand and gravel overlying a sequence of interbedded mudstone, siltstone and sandstone. The boundary between the soil and rock generally falls towards the east, mirroring the overall topography. An area of deeper soil strata towards the northeast corner of the site may indicate a buried channel type feature.

The maximum height cuttings on Plateau A will generally require excavation of about 3 or 4m of clay and about 5 or 6m of rock. Excavation on Plateau B will generally be in soils with occasional bedrock.

Groundwater flows are expected from cut faces where the boundary between soil and rock is encountered and as seepages within soils.

Excavated materials will be suitable for use as Type 1 / 2 general fill or Type 6 / 7 structural fill.

Embankment areas should be prepared by the removal of topsoil and the placement of a granular drainage layer on the exposed formation.

Embankments up to 6m in height are anticipated. The estimated total and differential settlements below embankments are not likely to be of sufficient magnitude to affect the development programme or require post construction monitoring.

Preliminary design of shallow spread foundations may anticipate bearing capacities of about 100kN/m² in clay and properly engineered embankment fill. Significantly higher bearing capacities will be available in rock. Foundations may require extending by trench fill where strata types vary laterally.

Preliminary design of roads may be based on a CBR of 5% in natural strata and 2% on embankment fill.

Concrete at shallow depths may be designed on the basis of DS-1.

For the purposes of the contamination risk assessment, the results of the soil

analyses have been compared to the CLEA SGVs where available, or alternatively, Generic Assessment Criteria (GAC), determined by LQM and CIEH in accordance with current legislation and guidance.

The investigations have not indicated the presence of contamination that would pose a significant risk to site users or the water environment.

In the absence of a contamination source it is considered that systematic remediation, validation and reporting is not required as part of this development.

Methane has been detected in concentrations that may require gas protection measures in buildings. Additional monitoring is required to clarify the gas regime and any gas protection measures.

CONTENTS

EXECUTIVE SUMMARY

1.0	INT	RODUCTION	4
2.0	EXI	STING INFORMATION	4
3.0	SITE	ESETTING	5
	3.1	Site Location	5
	3.2	Site Description	5
	3.3	Geological Setting	7
	3.4	Hydrogeological Setting	7
	3.5	Hydrological Setting	7
	3.6	Radon	7
	3.7	Environmental setting	7
	3.8	Geological Constraints	8
	3.9	Site History	8
4.0	SITE	EWORK	8
5.0	LAB	BORATORY TESTS	10
	5.1	Geotechnical Testing	10
	5.2	Chemical Testing	10
6.0	GRC	OUND CONDITIONS ENCOUNTERED	11
	6.1	Previous Investigations	11
	6.2	Current Investigation	11
	6.3	Topsoil	12
	6.4	Made ground	12
	6.5	Clay	12
	6.6	Sand / Gravel	13
	6.7	Bedrock	13
	6.8	Groundwater	13
7.0		ESSMENT OF STRATA CONDITIONS	14
	7.1	Assessment of Strata Conditions	14
8.0	ENC	JINEERING DISCUSSION AND	
	REC	COMMENDATIONS	16
	8.1	Development Proposals	16
	8.2	Earthworks: Cuttings	16
	8.3	Earthworks: Re-use or export of materials	17
	8.4	Earthworks: Embankments	17
	8.5	Foundation Design	18

			Guidelines for the Design of Piles - First Approximation of Working Loads	ii/i-ii/iii
APPE	NDIX	2 -	DESIGN CONSIDERATIONS	
		au B. 1 of 2. au B. 2 of 2.		
		au A. Ch800 – Ch8 au B. 1 of 2.	SOU (approx)	
		au A. $Ch650 - Ch7$		
		au A. Ch500 – Ch6		
		au A. Ch350 – Ch4		
		au A. Ch300 – Ch3		
		au A. Ch200 – Ch3		
	Platea	au A. Ch100 – Ch2	200 (approx)	
i iguit	5 1 1 1 . J	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sommar Sections as follows.	
•		to Figure A1 11 N	Iominal Sections as follows:	
Figure Figure		-	Site Location Site Plan	
	NDIX		DRAWINGS Site Location	
		1		
12.0	REFE	ERENCES		27
	11.1	Assessment of G		20
		ERATION Assessment of G	as Emission	26 26
11.0			S IN RELATION TO GAS	24
		C	C C	20
			nt During Site Works	23
		Consultation	Unidentified Sources of Contamination	25 25
	10.1		Inidentified Sources of Contemination	24
10.0			ONTAMINATION	24
	2.0	Summary Of KISP		24
	9.5 9.6	Summary of Risk	- Controlled Waters	24 24
	9.4 0.5	Risk Estimation -		23
	9.3	U		22
	9.2	Risk Assessment		22
	9.1	Contaminated La	ind	22
			OSED DEVELOPMENT	22
9.0	ENV	IRONMENTAL R	ISK ASSESSMENT IN	
	8.8	Chemical Attack	on Buried Concrete	20
	8.7	Road and Hard S	• •	20
	8.6	Excavations		19

APPENDIX 3		CONTAMINATION ASSESSMENT General Notes on Chemical Contamination	iii/i-iii/ii
APPENDIX 4	-	GAS GENERATION General Notes on Gas Generation	

1.0 INTRODUCTION

- 1.1 It is understood that it is proposed carry out a ground re-modelling exercise at the site to provide two sensibly level platform areas for future office building development.
- 1.2 On the instructions of Opus International (UK) Ltd., Consulting Engineers to the Welsh Assembly Government, an interpretative report has been prepared based upon the findings of the desk study, intrusive investigations and laboratory testing. The interpretative report has been prepared to provide conclusions and recommendations for the design and construction of the proposed works.
- 1.3 This report has been prepared for the sole use of the Client for the purpose described and no extended duty of care to any third party is implied or offered. Third parties using any information contained within this report do so at their own risk.
- 1.4 The comments given in this report and the opinions expressed herein are based on the information received, the conditions encountered during site works, and on the results of tests made in the field and laboratory. However, there may be conditions prevailing at the site which have not been disclosed by the investigation and which have not been taken into account in the report.
- 1.5 The comments on groundwater conditions are based on observations made at the time the site work was carried out. It should be noted that groundwater levels vary owing to seasonal or other effects.

2.0 EXISTING INFORMATION

- 2.1 This report is based upon the following information:
 - Ian Farmer Associates (1998) Ltd. Warren Hall, Broughton. Factual report on Ground Investigation. Reference W08/40274. February 2008.
 - Ian Farmer Associates (1998) Ltd. Warren Hall, Broughton. Report on Phase 1 Desk Study. Reference W07/40274-1. February 2008.
 - Exploration Associates Ltd. Warren Hall Highway Infrastructure. Factual Report on Ground Investigation. Reference 125001. April 1995.
 - Stats Ltd. Warren Hall Park, Broughton. Report on Ground Investigation. Reference M1459. July 1989.
- 2.2 Relevant information from the above reports has been summarised within this current report.
- 2.3 The full information used as the basis for the conclusions and recommendations made in this report should be read in conjunction with this report.

3.0 SITE SETTING

3.1 Site Location

3.1.1 The site is situated immediately to the southwest of Broughton, Flintshire, and may be located by National Grid reference SJ 327 631. A site location plan is included in Appendix 1, Figure A1.1.

3.2 Site Description

- 3.2.1 The site comprises an area, elongated from north to south, extending to some 34 hectares. The overall length of the site is some 800m with a maximum width of about 500m, towards the southern end, and an average width of about 300m.
- 3.2.2 The site is bounded to the northwest by the A5104 trunk road, immediately adjacent to the Warren Bank Interchange, to the northeast and east by Lesters Lane and to the south and west by adjoining agricultural grazing land.
- 3.2.3 At the time of the investigation the site comprised agricultural grazing land with occasional mature deciduous trees. The site area was split into fields by hedgerows. The general fall of ground across the site was from west to east.
- 3.2.4 For the purposes of development the site has been subdivided into Plateau A and Plateau B.
- 3.2.5 Plateau A occupies the northern and eastern parts of the site, adjacent to Lesters Lane. Plateau A is approximately rectangular in shape, elongated from north to south, with approximate dimensions of 800m by 300m.
- 3.2.6 The elevations across Plateau A ranged from about 65mAOD at the northwest corner to about 37mAOD along the eastern side of the area. The overall gradients vary across the area. The northern part of Plateau A falls towards the east with gradients of about 1 in 20, the central area about 1 in 15 and the southern area about 1 in 40.
- 3.2.7 Plateau B occupies an approximately rectangular area to the west of the southern and central part of Plateau A. Plateau B has approximate dimensions of about 300m, north to south, and 200m west to east.
- 3.2.8 The elevations across Plateau B ranged form about 63mAOD around the northwest corner to about 50mAOD towards the southeast corner.
- 3.2.9 A site plan is included in Appendix 1, Figure A1.2.

3.3 Geological Setting

- 3.3.1 Details of the geology underlying the site have been obtained from the British Geological Survey map, Sheet No. 108, 'Flint', solid and drift edition, 1:50,000 scale, published 1999.
- 3.3.2 The geological map indicates the site to be underlain by superficial deposits of stoney clay till and glaciofluvial deposits, undifferentiated, sand and gravel which lay to the south of the site. The map also indicates made ground on top of natural ground at the centre of the site.
- 3.3.3 The superficial deposits are underlain by Arnsbergian to Kinderscoutian Marsdenian grey mudstones with marine bands and thin sandstones of Namurian Upper Carboniferous (Silesian).

3.4 Hydrogeological Setting

3.4.1 The site hydrogeological setting has been presented in the Phase 1 Desk Study and the classification may be summarised as strata of a minor aquifer overlain by soils of high leaching potential.

3.5 Hydrological Setting

3.5.1 The site hydrological setting has been presented in the Phase 1 Desk Study and the classification may be summarised as a small surface water stream, Warren Dingle, along the southern edge of the site. There are no surface water abstractions within 1km of the site.

3.6 Radon

- 3.6.1 The radon classification has been presented in the Phase 1 Desk Study.
- 3.6.2 The information obtained was contradictory and therefore it is unlikely that a single level of radon risk can be determined for the site as a whole.

3.7 Environmental setting

- 3.7.1 The site environmental setting has been presented in the Phase 1 Desk Study.
- 3.7.2 The desk study did not reveal any significant risks arising from the environmental setting of the site with the exception of the possible presence of made ground of unknown origin.
- 3.7.3 The desk study noted a potential risk if made ground was present at the site and contained elevated concentrations of contamination.

3.8 Geological Constraints

- 3.8.1 Recorded geological constraints on the development of the site have been presented in the Phase 1 Desk Study.
- 3.8.2 The desk study did not reveal any significant risks arising from geological constraints with respect to the development of the site.

3.9 Site History

- 3.9.1 The history of the site, based on readily available historical maps has been presented in the Phase 1 desk study.
- 3.9.2 The historical maps indicated that the site has remained as agricultural land for the last 140 years.
- 3.9.3 The desk study did not reveal any significant risks arising from the site history with respect to the development of the site.

4.0 SITE WORK

- 4.1 Three ground investigations have been carried out relating to the general site area.
- 4.2 The most recent site work site work was carried out between 9th and 18th January 2008 by Ian Farmer Associates and comprised the following:
 - Seventeen cable percussion boreholes designated BH01 to BH17
 - Ten boreholes, BH04 to BH10, and BH15 to BH17 extended by rotary coring techniques
 - Seventeen window sampler boreholes, designated WS01-WS17
 - Monitoring standpipes installed in thirteen boreholes, BH01 to BH12 and WS10
 - Eighteen dynamic probes, designated DP01 to DP18
 - Fifteen machine excavated trial pits, designated TP01 to TP15
 - In-situ Californian Bearing Ratio tests and probing by TRL methods at all trial pit locations
 - Gas and groundwater levels recorded on six occasions following site works

- 4.3 The exploratory holes carried out under this current investigation were divided between the development areas as follows:
 - Plateau A: BH3 to BH17, WS6 to WS17, DP6 to DP17 and TP4 to TP15
 - Plateau B: BH1, BH2, WS1 to WS5, DP1 to DP5 and TP1 to TP3
- 4.4 In 1995 a ground investigation was carried out by Exploration Associates comprising the following:
 - Twelve cable percussion boreholes designated BH1 to BH12
 - Monitoring standpipes installed in five boreholes
 - Twenty seven machine excavated trial pits, designated TP1 to TP27
 - In-situ Californian Bearing Ratio tests
- 4.5 The ground investigation carried out by Exploration Associates was not coincident with the subject area of the current investigation. The investigation was carried out around the main junction area, to the north of the site, and southwards along the eastern edge of Plateau A. The investigation was carried out immediately adjacent to Lesters Lane. The exploratory holes approximately relate to the current plateau areas as follows:
 - Eastern edge of Plateau A: Trial pits TP1 to 14 including TP11A and CBR tests C1 to C11. Records have not been received for trial pits TP1, 2, 11A and 12.
- 4.6 In 1989 a ground investigation was carried out by Stats Ltd. comprising the following:
 - Nine cable percussion boreholes designated BH1, BH3 to BH8, BH4a and BH5a
 - Eighteen machine excavated trial pits, designated TP01 to TP18
- 4.7 The ground investigation carried out by Stats Ltd. extended to a greater area than the subject area of the current investigation. The exploratory holes approximately relate to the current plateau areas as follows:
 - Plateau A: Boreholes BH1, 3, 5 and 5a and trial pits TP1 to 6
 - Plateau B: Boreholes BH4, 4a and 6 and trial pits TP5, 8 and 9
- 4.8 In order to maintain clarity within this report any references to exploratory holes carried out under the current investigation will have no prefix, exploratory holes carried out by Exploration Associates will have the prefix "E" and exploratory holes carried out by Stats Ltd. will have the prefix "S".

5.0 LABORATORY TESTS

5.1 Geotechnical Testing

5.1.1 Geotechnical testing has been carried out as part of each of the ground investigations listed in Section 2.1 above. The range of tests carried out are indicated in the table below:

Geotechnical test	IFA	Ex. Ass	Stats
Natural moisture content	Yes	Yes	Yes
Plasticity indices	Yes	Yes	Yes
Bulk Density	Yes	Yes	Yes
Particle size distribution	Yes	Yes	Yes
Undrained triaxial compression	Yes	Yes	Yes
Oedometer consolidation	Yes	Yes	Yes
Dry density / moisture content relationship	Yes	Yes	Yes
California Bearing Ratio (CBR)	Yes	Yes	Yes
MCV	No	Yes	No
pH value	Yes	Yes	Yes
Total sulphate content	No	Yes	No
Water soluble sulphate content	Yes	No	Yes
Groundwater sulphate content	Yes	No	Yes

5.2 Chemical Testing

- 5.2.1 Chemical testing was carried out as part of the current investigation.
- 5.2.2 An analytical testing suite of commonly occurring contaminants was carried out on fifty-six samples of soil, seven samples of leachate and six samples of water.
- 5.2.3 Chemical testing was not carried out as part of the previous investigations.

6.0 GROUND CONDITIONS ENCOUNTERED

6.1 **Previous Investigations**

6.1.1 The investigation carried out by Stats in 1989 encountered the sequence and indicative thicknesses of strata, within the current site area, summarised below:

Strata Encountered	Depth Encou	Strata Thickness	
Strata Encountereu	From	То	(m)
Top soil	0	0.20 - 0.30	0.20 - 0.30
Firm and stiff CLAY	Absent - 0.30	1.60 - 6.00	1.35 - 5.10
SAND with gravel	Locally pre	ses up to 2.70m	
Mudstone / sandstone bedrock	0.80 - 6.00	Not proved	

6.1.2 The investigation carried out by Exploration Associates in 1995 encountered the sequence and indicative thicknesses of strata, along the eastern edge of the current Plateau A, summarised below:

Strata Encountered	Depth Encountered (m)		Strata Thickness
	From	То	(m)
Top soil	0	0.15 - 0.40	0.15 - 0.40
Made ground	0.15	2.10	1.95
Firm and stiff CLAY	0.15 - 0.40	0.80 - 3.40	0.50 - 1.80
SAND with gravel	Locally present with thicknesses up to 2.30m		
Mudstone / sandstone bedrock	0.80 - 2.10		Not proved

6.2 Current Investigation

6.2.1 The current investigation encountered the sequence and indicative thicknesses of strata are indicated on the nominal cross sections in Appendix 1 and summarised below:

Strata Encountered	Depth Encountered (m)		Strata Thickness
	From	То	(m)
Top soil	0	0.20 - 0.60	0.20 - 0.60
Made ground	0-0.30	1.50 - 2.50	0.60 - 2.00
Firm and stiff CLAY	0.20 - 0.50	0.70 - 5.80	0.40 - 4.20
SAND / GRAVEL	Locally present with proved thicknesses up to 5.80m		
Mudstone / sandstone bedrock	0.50 - 14.20		Not proved

- 6.2.2 The investigations have proved a mantle of drift deposits across the site overlying bedrock.
- 6.2.3 The drift deposits do not appear to show systematic variation in thickness across the site although a channel, represented by substantially deeper drift deposits, may be present extending from the centre of the site towards the northeast corner.

6.3 Topsoil

6.3.1 Topsoil was encountered throughout the site areas as a thin veneer with thicknesses between 0.15m and 0.60m.

6.4 Made ground

- 6.4.1 Made ground was encountered locally across the site.
- 6.4.2 Across Plateau A made ground appeared to be present towards the northeast and east central areas and absent from the northwest and southern areas.
- 6.4.3 Across Plateau B made ground was only encountered in TP3, on the southern part of the area, as a thin layer beneath topsoil.
- 6.4.4 Made ground predominantly comprised clay with secondary gravel. Made ground comprised sand in TP8. The made ground appears to comprise reworked locally won materials.

6.5 Clay

- 6.5.1 The majority of the soil strata encountered across the site comprised clay.
- 6.5.2 The clay encountered may generally be described as brown slightly sandy, slightly gravely clay. Cobbles were locally noted.

6.5.3 The consistency of the clay was variously described as soft, firm and stiff. Soft clay appeared to be present either directly beneath topsoil or adjacent to granular deposits or rock.

6.6 Sand / Gravel

- 6.6.1 Sand and gravel was encountered across the site generally interbedded as layers within the clay.
- 6.6.2 The distribution of granular strata across the site did not appear to be systematic either laterally or vertically.
- 6.6.3 The greatest thicknesses of granular strata, in excess of 5m, were encountered in BH11 and BH17 towards the northeast corner of the site.

6.7 Bedrock

- 6.7.1 Rock was encountered across the site. Rock variably comprised sandstone, siltstone and mudstone. The depth to rockhead varied across the site from 0.50m to 14.20m. The average thickness of drift deposits, based on the proved rockhead depths was about 3.50m.
- 6.7.2 The elevation of the rockhead falls across the site towards the east.
- 6.7.3 The rock head elevations across the southern part of Plateau A fall from about 50mAOD to about 38mAOD adjacent to Lesters Lane. Beneath the northern part of Plateau A the rockhead levels fall from about 55mAOD to about 28mAOD adjacent to Lesters Lane.
- 6.7.4 There appears to be a channel type feature, in the rockhead profile, that extends from the central part of Plateau A towards the northeast corner of the site.
- 6.7.5 The rockhead beneath Plateau B appears to undulate between elevations of about 55mAOD increasing to about 58mAOD adjacent to the western boundary.

6.8 Groundwater

- 6.8.1 Groundwater was encountered as seepages within drift deposits at depths between about 0.50m and 2.50m. Typically these seepages occurred from sand or silt layers.
- 6.8.2 Groundwater was encountered at the boundary between drift deposits and bedrock at depths between 2.50m and 6.50m. The groundwater encountered at this boundary generally had a slight pressure head of up to about 1m when encountered during drilling.

6.8.3 Groundwater depths monitored subsequent to fieldworks varied between about 0.40m and 2.70m.

7.0 ASSESSMENT OF STRATA CONDITIONS

7.1 Assessment of Strata Conditions

- 7.1.1 The soil strata encountered on site were principally cohesive in nature and contained differing proportions of secondary constituents varying in size from sand to cobbles. Sand and gravel, with local variations in grading, were also encountered. Bedrock lies beneath drift deposits. The material types are similar across both Plateau A and B and are therefore discussed together below.
- 7.1.2 Plasticity indices indicate that the clay strata are predominantly low plasticity. Locally clay of intermediate plasticity and silt of high plasticity were encountered. Natural moisture contents were generally about the plastic limit.
- 7.1.3 Laboratory measurements of bulk densities of the clay typically ranged from about 2.1 to 2.4 Mg/m³ with dry densities typically from about 1.8 to 2.1 Mg/m³.
- 7.1.4 Laboratory measurements of undrained shear strength, Cu, ranged from 45kN/m² to 287kN/m² with an overall mean of 126kN/m². These values correspond to consistencies of firm, stiff and very stiff. The Cu values do not indicate any systematic variation between strength and depth.
- 7.1.5 Work undertaken by Stroud, ref. 12.8 determined a relationship between SPT 'N' values and the undrained shear strengths of many over-consolidated clays. Further work by Stroud and Butler, ref. 12.9, in which data was analysed from sites covering a wide range of glacial deposits, confirmed there to be a correlation between the 'N' value, plasticity index and undrained shear strength.
- 7.1.6 The relationship was of the form:

 $Cu = F_1 \times N$ where Cu = Undrained shear strength $F_1 = Factor$

7.1.7 It was determined by Stroud that F_1 varied between 4kN/m² for material of high plasticity and 6kN/m² for material of low plasticity. It is considered that for the strata encountered on this site a value of $F_1 = 5$ kN/m² would be appropriate.

- 7.1.8 SPT'N' values obtained in cohesive strata across the site ranged from 7 to 39 with an average of 16.
- 7.1.9 On this basis a range of Cu values between 35kN/m² and 195kN/m² with an average of 80kN/m² may be derived from the SPT data.
- 7.1.10 SPT'N' values obtained in granular strata across the site ranged from 7 to >50 indicating with a mean, for tests reaching full penetration, of 15. These values indicate relative densities in the range loose, medium dense, dense and very dense.
- 7.1.11 SPT 'N' values obtained in bedrock ranged from 22 to 50 blows for 20mm penetration corresponding to an extrapolated SPT 'N' values of 750. The overall average of SPT'N' values within bedrock was 245.
- 7.1.12 CIRIA Report 143 indicates that a relationship exists between SPT'N' value and unconfined compressive strength, σ_{c} , of weak rocks. The relationship is acknowledged to be conservative and is therefore of the form:

$$\sigma_{\rm c} > 10 \text{ x 'N' } (\text{kN/m}^2)$$

- 7.1.13 On this basis the strengths derived from SPT'N' values within the bedrock range from 0.22MPa to 7.5MPa corresponding to very weak, weak and moderately weak. The strength values vary with lithology and with depth of penetration into the rock.
- 7.1.14 Direct measurement of uniaxial compressive strength (UCS), carried out on samples recovered by coring, yielded results between 0.80MPa and 67MPa with an average of 30MPa. It should be noted that within the rock strata encountered typically only the most competent materials, with the fewest fractures, are suitable for UCS testing and therefore these values are likely to represent an upper bound value for the strata encountered.
- 7.1.15 Measurement of the strength of rock was also made by the point load test. The point load test derives a strength value, Is50(MPa), that may be approximately related to UCS by the following:

$$UCS = Is50 \ge 24$$

7.1.16 On this basis the UCS values derived from point load testing ranged from 1.2MPa to 57.6MPa. This range of values is similar to that derived from direct measurement of UCS.

8.0 ENGINEERING DISCUSSION AND RECOMMENDATIONS

8.1 Development Proposals

- 8.1.1 It is understood that it is proposed carry out a ground re-modelling exercise at the site to provide two development areas for future office building development.
- 8.1.2 The ground re-modelling will comprise relatively large scale cut and fill earthworks to produce a near level ground profile across Plateau A and a lesser degree of cut for the western site area to produce a similar area of near level ground, at a slightly higher elevation, that will constitute Plateau B.
- 8.1.3 The illustrative sections, provided by the Engineer, imply the possible excavation of materials to an approximate maximum depth of 9m along the western area of Plateau A and material excavation to depths of 2 to 3m across Plateau B.
- 8.1.4 It is proposed to re-use the excavated materials as embankment fill to raise the site levels along the eastern boundary by up to 6m so providing a near earthwork balance.

8.2 Earthworks: Cuttings

- 8.2.1 Earthworks will comprise the removal of material from the west side of Area A and the whole of Area B.
- 8.2.2 Excavation to depths of about 9m may be required along the west side of Plateau A. This would require the removal of between 3 and 4m of clay, locally with sand bands, and about 5 or 6m of bedrock. The bedrock comprised an interbedded sequence of mudstone, siltstone and sandstone.
- 8.2.3 Significant cut slopes will be formed along the western side of Plateau A. Along much of this cut the boundary between the drift deposits and the underlying bedrock will be exposed. Observations on groundwater during drilling and monitoring indicate that a spring line should be anticipated along this soil / bedrock boundary. In addition the exposure of sand or gravel layers within the soil strata may give rise to seepages from the soil slope.
- 8.2.4 Preliminary design of the cutting along the west side of Plateau A may be based on a slope of gradient 1 vertical to 1.5 horizontal within the bedrock and a gradient of 1 vertical to 2.5 horizontal within the overlying soil. The incorporation of a bench along the level of the soil / rock boundary would permit the incorporation of drainage measures to manage water from the spring line and permit access for maintenance of the soil slope. Additional

drainage measures may be required within the soil slope to manage local seepages.

- 8.2.5 Excavation to depths of about 2 to 3m across Plateau B would predominantly require the removal of soil strata comprising clay, locally with significant sand layers. The excavation will locally encounter bedrock.
- 8.2.6 Preliminary design of cuttings around Plateau B may be based on a gradient of gradient of 1 vertical to 2. Drainage measures may be required within the soil slopes to manage local seepages.
- 8.2.7 Inspection of slopes should be carried out during excavation to ensure that design measures achieve adequate factors of safety with respect to local strata conditions.
- 8.2.8 Excavation of soil strata should be achievable by standard plant. The excavation of rock is likely to require the use of heavy duty ripping equipment and / or hydraulic breakers. The difficulty of rock excavation will increase with depth below rock head.

8.3 Earthworks: Re-use or export of materials

- 8.3.1 Particle size analysis of the soil strata indicate that the cohesive strata are suitable for use as Class 2, general cohesive fill, or Class 7, selected cohesive fill and that the granular strata are suitable for use as Class 1, general granular fill, or Class 6, selected granular fill.
- 8.3.2 Made ground, where locally encountered, generally comprised reworked clay and will therefore likely be suitable for use as Class 2 fill.
- 8.3.3 It is considered that sandstone will be suitable for use as Class 1 fill and may be suitable for use as Class 6 fill. The use of sandstone as Class 6 fill is likely to require crushing.
- 8.3.4 It is considered that mudstone will be suitable for use as Class 2 fill. The use of mudstone as Class 7 fill would require stabilisation by the addition of lime or cement.
- 8.3.5 Leachate testing of soil samples for waste acceptance criteria indicates that they would fall within the classification of "inert waste".

8.4 Earthworks: Embankments

- 8.4.1 The preparation of the formation for embankments will require the removal of topsoil, typically encountered to about 0.30m depth. Any areas of soft, organic or otherwise deleterious material should also be removed.
- 8.4.2 Cross sections provided by the Engineer indicate maximum embankment heights up to about 6m along the eastern side of Plateau A.

- 8.4.3 It is considered that the preliminary design of embankments may be based on gradients of 1 vertical to 2 horizontal.
- 8.4.4 Assuming an average thickness of 3m of compressible clay strata the total maximum settlements beneath embankments will be along the eastern edge of the site and are likely to be in the order of 100mm. It is anticipated that approximately 50% of this settlement will occur during embankment construction.
- 8.4.5 The rate of consolidation will be dependent on the length of the drainage paths allowing the release of excess pore water pressure from the clay.
- 8.4.6 It is recommended that a layer of granular material be placed immediately above formation level to minimise the length of drainage paths and therefore the rate that consolidation settlement will occur.
- 8.4.7 Based on the presence of this drainage blanket at the base of the embankment maximum times for 90% of consolidation settlement to occur are estimated to be in the range 1 to 3 months.
- 8.4.8 The magnitude of settlement will reduce pro-rata with reduction of embankment thickness assuming a constant thickness of compressible strata.
- 8.4.9 The total settlements may approach the differential settlement in areas where the embankment is underlain by laterally adjacent cohesive and granular strata.
- 8.4.10 The post construction settlements indicated above are not considered to be of sufficient magnitudes to require the installation of post construction settlement monitoring.

8.5 Foundation Design

- 8.5.1 The results of laboratory tests indicate the clay strata may be considered to be of low and, locally, medium plasticity. Although the proposed buildings are not likely to be residential the classification system used by the National House Building Council, ref 12.10 and other published data, refs 12.11 and 12.12 provides a useful indication of minimum foundation depths. Based on these sources the clay is of low and medium volume change potential. Changes in moisture content may result in moderate changes in volume, seasonal changes being exacerbated by the presence of trees. Outside the zone of influence of proposed trees it is considered that a minimum depth of 0.90m should be applied to foundations within clay or clay fill.
- 8.5.2 The foundations across the site will encounter a variety of strata at shallow depth.

- 8.5.3 Foundation excavations along the western side of Plateau A will generally encounter bedrock. These strata will provide adequate bearing capacity for the use of shallow spread foundations.
- 8.5.4 Foundation excavations along the central part of Plateau A will predominantly encounter firm and stiff clay. Preliminary design of shallow spread foundations up to 1m in width may be based on an allowable bearing capacity of 100kN/m². This would provide an adequate factor of safety against shear failure and limit consolidation settlements to the order of 20mm.
- 8.5.5 Foundation excavations along the eastern part of Plateau A will encounter embankment fill at shallow depths. The bearing capacity of this fill will be dictated by the method of emplacement. Laboratory compaction tests have indicated that maximum dry densities of about 1.8Mg/m³ are achievable at moisture contents about 15%. These values approach the in-situ values for the clay and suggest that similar bearing capacities should be achievable within the embankment fill as those indicated above for the in-situ clay.
- 8.5.6 Foundations spanning the boundary between bedrock and clay, may encounter some differential settlement. In this case it is recommended that the foundations are extended through clay to bear on the underlying bedrock.
- 8.5.7 If buildings are located close to the top of the embankment crest then detailed slope analysis should be carried out to determine the effect of building loads on slope stability.
- 8.5.8 The strata encountered at foundation depths on Plateau B will be bedrock, clay or sand. The bearing capacities indicated above may also be used for preliminary design of foundations in this area.
- 8.5.9 Piles may be considered in areas where high column loads are anticipated and the underlying strata are clay or embankment fill. Guidelines for the design of piles are given in Appendix 5.
- 8.5.10 The carrying capacity of piles depends not only on their size and the ground conditions but also on their method of installation. Therefore, it is recommended that specialist Piling Contractors be contacted as to the suitability and carrying capacity of their piles in the ground conditions pertaining to the site.

8.6 Excavations

8.6.1 On the basis of observations on site, together with the results of in-situ and laboratory tests, it is considered that excavations to less than 0.90m should stand unsupported in the short term. Side support for safety purposes should of course be provided to all excavations in excess of 0.90m deep in accordance with Health and Safety Regulations.

- 8.6.2 Groundwater seepages should be expected in shallow excavations for foundations or services. It is also possible that perched groundwater could be present in the strata overlying the clay. It is considered that this could be dealt with by pumping from sumps or diversion drainage.
- 8.6.3 Groundwater flows could be expected in excavations taken through the soil / bedrock boundary.

8.7 Road and Hard Standing Design

- 8.7.1 The structural design of a road or hard standing is based on the strength of the subgrade, which is assessed on the California Bearing Ratio, **CBR**, scale.
- 8.7.2 In situ CBR tests have recorded values in the range 7.4% to 19% for clay formation and 8.7% to 30% for sand formation.
- 8.7.3 Laboratory CBR tests have recorded values in the range 2.0% to 5.2% for clay.
- 8.7.4 In practice, the correlation given by the Highways Agency, ref. 12.13, also provides guidance figures for equilibrium CBR values for varying construction conditions.
- 8.7.5 It is considered that for formations prepared in natural soil strata a CBR value of about 5% may be adopted for preliminary design. Where formations are prepared in suitably compacted embankment fill a CBR value of 2% may be adopted for preliminary design.
- 8.7.6 Any areas of soft or deleterious material should be excavated and replaced with a properly compacted selected material.

8.8 Chemical Attack on Buried Concrete

- 8.8.1 The results of chemical tests indicate sulphate concentrations in the soil of between <0.1g/l and 0.4g/l as a 2:1 water/soil extract with pH values in the range of 4.8 to 8.2
- 8.8.2 The results of chemical tests indicate sulphate concentrations in groundwater of 0.04g/l and 0.07g/l with pH values of 8.2.
- 8.8.3 In accordance with the guidelines given in BRE Special Digest 1, ref. 12.14, the Aggressive Chemical Environment for Concrete (ACEC) classification for the site is AC-3z. Consequently buried concrete should conform to Design Sulphate Class DS-1.
- 8.8.4 It is recommended that for conventional shallow foundations, the groundwater should be regarded as mobile.

9.0 ENVIRONMENTAL RISK ASSESSMENT IN RELATION TO PROPOSED DEVELOPMENT

9.1 Contaminated Land

- 9.1.1 The statutory definition of contaminated land is defined in the Environmental Protection Act 1990, ref 12.15, which was introduced by the Environment Act 1995, ref 12.16;
 - 'Land which appears to the Local Authority in whose area it is situated to be in such a condition, by reason of substances in, on or under the land, that –
 - significant harm is being caused or there is a significant possibility of such harm being caused; or
 - significant pollution of controlled waters is being caused, or there is a significant possibility of such pollution being caused.'

9.2 Risk Assessment

- 9.2.1 The definition of contaminated land is based on the principles of risk assessment. Risk is defined as a combination of:
 - The probability, or frequency of exposure to a substance with the potential to cause harm, and:
 - The seriousness of the consequence.

9.3 Pollutant Linkage

- 9.3.1 The basis of an environmental risk assessment involves identifying a 'source' of contamination, a 'pathway' along which the contamination may migrate and a 'receptor' at risk from the contamination.
- 9.3.2 Current legislation defines the various elements of the pollution linkage as:
 - A contaminant is a substance which is in or under the ground and which has the potential to cause harm or to cause pollution of controlled waters.
 - A pathway is one or more routes through which a receptor is being exposed to, or affected by, a contaminant, or could be so affected.
 - A receptor is either a living organism, an ecological system, a piece of land or property, or controlled water.

- 9.3.3 A pollutant linkage indicates that all three elements have been identified. The site can only be defined as 'Contaminated Land' if a pollutant linkage exists and the contamination meets the criteria in Section 9.1.1 above.
- 9.3.4 The guidance proposes a four-stage approach for the assessment of contamination and the associated risks. The four stages are listed below:
 - Hazard Identification
 - Hazard Assessment
 - Risk Estimation
 - Risk Evaluation
- 9.3.5 The hazard identification and hazard assessment have been based upon the Phase 1 Desk Study and formed the conceptual site model, detailed in our report, reference 40274-1, dated February 2008.
- 9.3.6 The risk assessment and evaluation stages are presented in this phase 2 interpretive report, after an intrusive ground investigation has taken place.

9.4 Risk Estimation - Humans

- 9.4.1 The proposed development consists of office / commercial buildings with associated access roads and car park areas. The risk assessment has therefore been based on guidelines for commercial / industrial. Should the proposed end-use of the site be changed in the future then further risk assessment may be required, particularly should a more sensitive end-use be envisaged.
- 9.4.2 The results of the soil analyses have been compared to the CLEA SGVs where available, or alternatively, Generic Assessment Criteria (GAC), determined by LQM and CIEH in accordance with current legislation and guidance, as detailed in their publication, ref.12.20.
- 9.4.3 The guidance values used within this contamination assessment have been tabulated and are detailed within Appendix 6.
- 9.4.4 The results of chemical analyses have been processed in accordance with recommendations set out in CLR 7, ref 12.17 and CLR 10, ref. 12.19. Where the concentrations determined on site are at or below the respective Guidance Level, they are considered not to pose a risk and are removed from further consideration, unless otherwise stated.
- 9.4.5 The results of the contamination testing carried out on soils were all below their respective guidance values and are therefore not considered to pose a significant risk to the proposed development.

9.5 Risk Assessment - Controlled Waters

- 9.5.1 The site is located on a minor aquifer and a surface watercourse forms the southern site boundary.
- 9.5.2 An initial assessment of the risk to controlled waters has been conducted on the basis of the leachate and groundwater test results. The leachate and groundwater results have been screened against the freshwater Environmental Quality Standards (EQS), ref. 12.21.
- 9.5.3 The analytical test results were all below their respective available EQS guidelines.
- 9.5.4 The presence of very slightly elevated values of TPH in the range C15 to C40 was noted in BH4 and BH9. This occurrence does not appear to be consistent with the rest of the analytical test data and may be due to minor local oil / diesel spillage from agricultural plant or investigation plant.
- 9.5.5 Given the ground conditions encountered at the site and the results of this contamination assessment, it is considered unlikely that further assessment of the risks to controlled waters may be required.

9.6 Summary of Risk Evaluation

- 9.6.1 The analytical test data generally confirms the desk study and is consistent with the site history as agricultural / greenfield land with made ground predominantly comprising reworked soils.
- 9.6.2 In the absence of a significant source of contamination the risks to potential receptors are considered very low.

10.0 MANAGEMENT OF CONTAMINATION

10.1 General

- 10.1.1 The results of laboratory tests, analysis of the data, together with consideration of the site conceptual model and exposure model for the proposed development, suggest that a formal remediation strategy is not required as part of this development.
- 10.1.2 In the absence of a formal remediation strategy there is no requirement for remediation validation monitoring or reporting.

10.2 Management of Unidentified Sources of Contamination

- 10.2.1 There is the possibility that other sources of contamination may be present on the site, which were not detected during the investigation. Should such contamination be identified or suspected during the site clearance or ground works, these should be dealt with accordingly. A number of options are available for handling this material, which include:
 - The removal from site and disposal to a suitably licensed tip of all material suspected of being contaminated. The material would need to be classified prior to disposal.
 - Short-term storage of the suspected material while undertaking verification testing for potential contamination. The storage area should be a contained area to ensure that contamination does not migrate and affect other areas of the site. Depending upon the amounts of material under consideration, this could be either a skip or a lined area.
 - Having a suitably experienced environmental engineer either on-call or with a watching brief for the visual and olfactory assessment of the material, and sampling for verification purposes.

10.3 Consultation

- 10.3.1 During the development of large site, consultation may be required for a number of reasons with a number of regulatory Authorities. The following provides an indication as to the most likely Authorities with which consultation may be required.
 - Local Authority. There may be a planning condition regarding contamination and consultation will be required with a designated Contaminated Land Officer within the Environmental Health Department. The Local Authority is generally concerned with human health risks.
 - Environment Agency. Where development may affect the local groundwater and / or surface water regime, where a site is within a groundwater protection zone or has been designated as a special site, the Environment Agency is likely to be involved to ensure that controlled waters are protected.
- 10.3.2 Based on the results of any consultation, there may be specific conditions imposed by one or more of the Authorities.

10.4 Risk Management During Site Works

- 10.4.1 During ground works, some simple measures may have to be put in place to mitigate the risk of contamination affecting the site workers and the environs. The majority of the proposed measures represent good practice for the construction industry and include:
 - Informing the site workers of the contamination on site and the potential health effects from exposure.
 - Where appropriate, the provision of suitable PPE for workers who may be potentially impacted by working in areas of the contamination.
 - Ensuring good hygiene is enforced on site and washing facilities are maintained on the site. Workers are discouraged from smoking, eating or drinking without washing their hands first.
 - Dust monitoring, and if necessary, suppression measures should be put into practice where contamination is becoming airborne.
- 10.4.2 Where contaminated materials are being removed from the site they should be disposed of at a suitably licensed landfill, with a 'duty of care' system in place and maintained throughout the disposal operations.
- 10.4.3 Current regulations relating to the landfill disposal of contaminated soils and excavated waste must be in accordance with the EC Landfill Directive, 1999/31/EC. Excavation wastes are now classified in accordance with the European Waste Catalogue, ref 12.22.

11.0 RECOMMENDATIONS IN RELATION TO GAS GENERATION

11.1 Assessment of Gas Emission

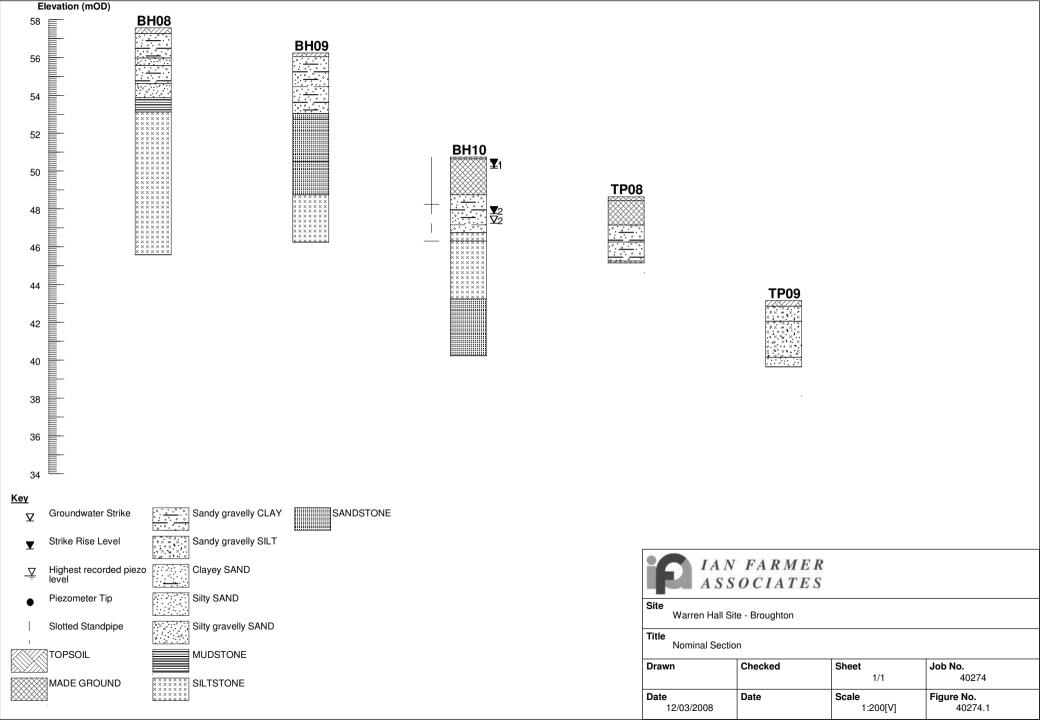
- 11.1.1 Gas standpipes were installed within the boreholes to monitor for gas emissions from either natural, landfill or coal mining sources.
- 11.1.2 Across the majority of the site the gas concentrations and flow rates were not sufficient to indicate that specific gas protection measures would be required in commercial buildings.
- 11.1.3 BH11, located at the northeast corner of the site, recorded methane concentrations up to 16% by volume allied to a flow rate of 1.8l/hr on 25th February 2008. A subsequent visit recorded a concentration of 2.3% by volume with negligible flow rate.

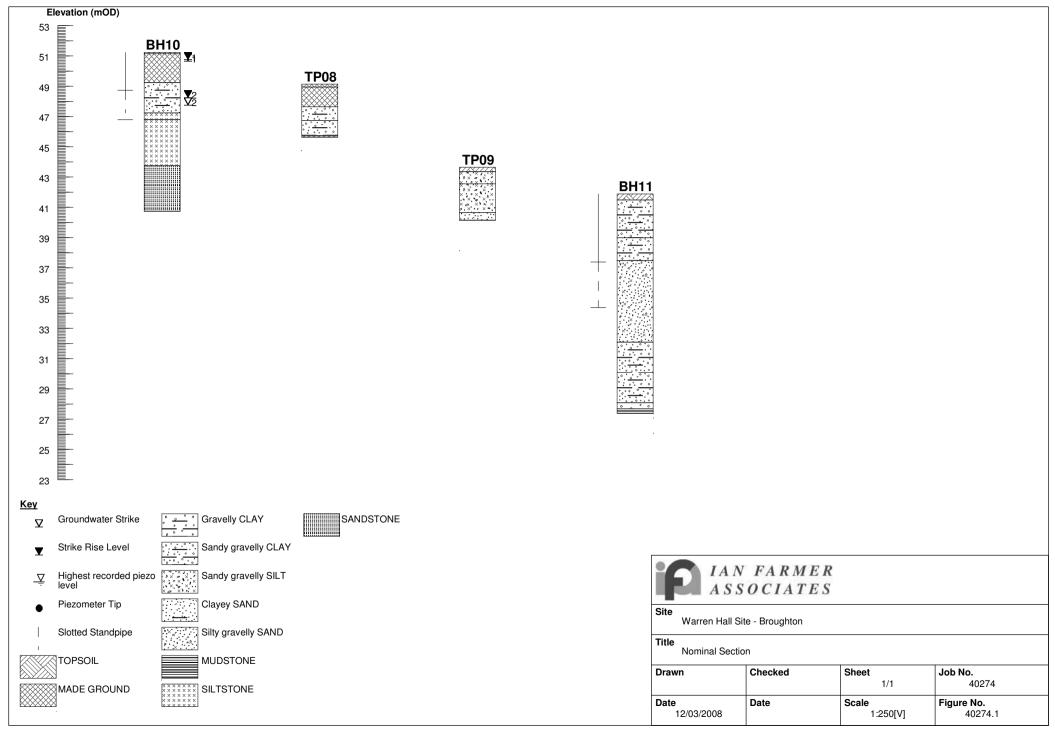
- 11.1.4 It is considered that the methane in BH11 may either be a confined source, within the sand or may be generating at another location and migrating through the sand.
- 11.1.5 Additional monitoring is required to determine the gas regime and the potential risk to the site.
- 11.1.6 Notes on potential gas protection measures are provided in Appendix 4.
- 11.1.7 It is recommended that further gas monitoring will be required to confirm the amount and flow of gas before the design is finalised. This monitoring may be carried out at a time between completion of earthworks and start of building.

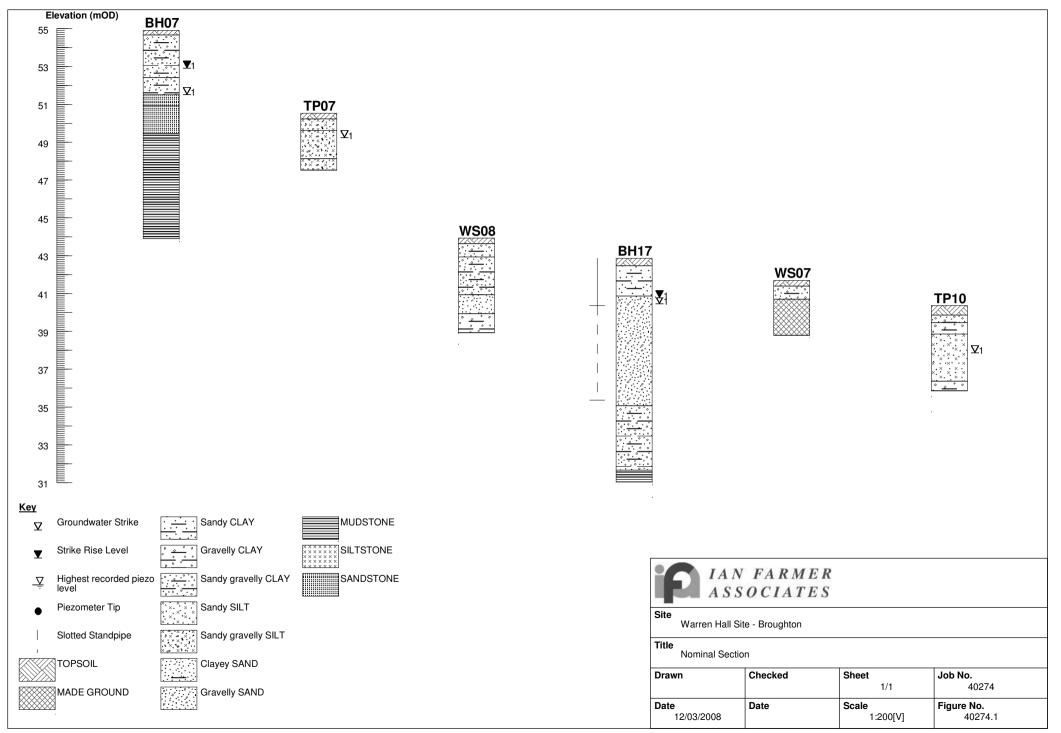
12.0 REFERENCES

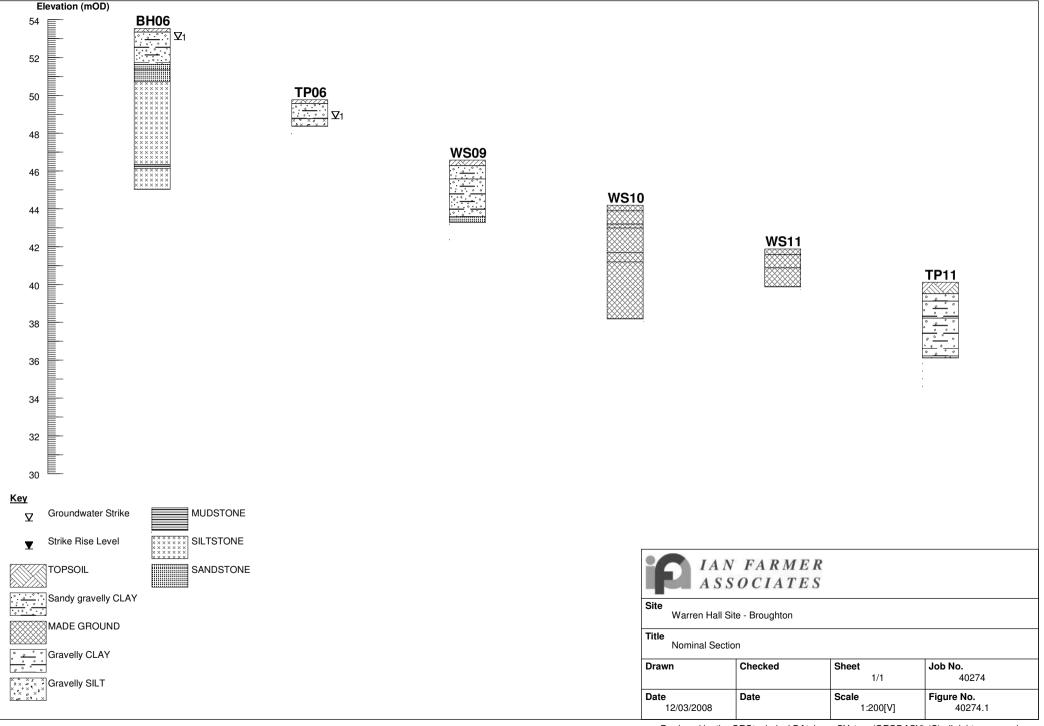
- 12.1 CLR 3, 'Documentary research on industrial sites', Report by RPS Consultants Ltd, DoE 1994.
- 12.2 CLR 2, 'Guidance on preliminary site inspection of contaminated land', Report by Applied Environmental, DoE 1994.
- 12.3 CLR 1, 'A framework for assessing the impact of contaminated land on groundwater and surface water', Report by Aspinwall & Co., DoE 1994.
- 12.4 CLR 11 (draft), 'Model procedures for the management of contaminated land: Risk assessment procedure', DoE 1998.
- 12.5 CLR 4, 'Sampling strategies for contaminated land'. Report by The Centre for Research into the Built Environment, the Nottingham Trent University, DoE, 1994.
- 12.6 British Standards Institute: BS 10175 'Code of practice for the investigation of potentially contaminated sites', BSI 2001.
- 12.7 British Standards Institute: BS 5930 'Code of practice for site investigations', BSi 1999.
- 12.8 Stroud, M.A. ' The Standard Penetration Test in Insensitive Clays and Soft Rocks', Proceedings of European Symposium on Penetration Testing, Stockholm, 1974.
- 12.9 Stroud, M.A. and Butler, F.G. 1975 'The Standard Penetration Test and Engineering Properties of Glacial Materials', Symposium of Engineering Behaviour of Glacial Materials, Birmingham University.
- 12.10 National House-Building Council, Standards, Chapter 4.2, 2003 'Building Near Trees'.

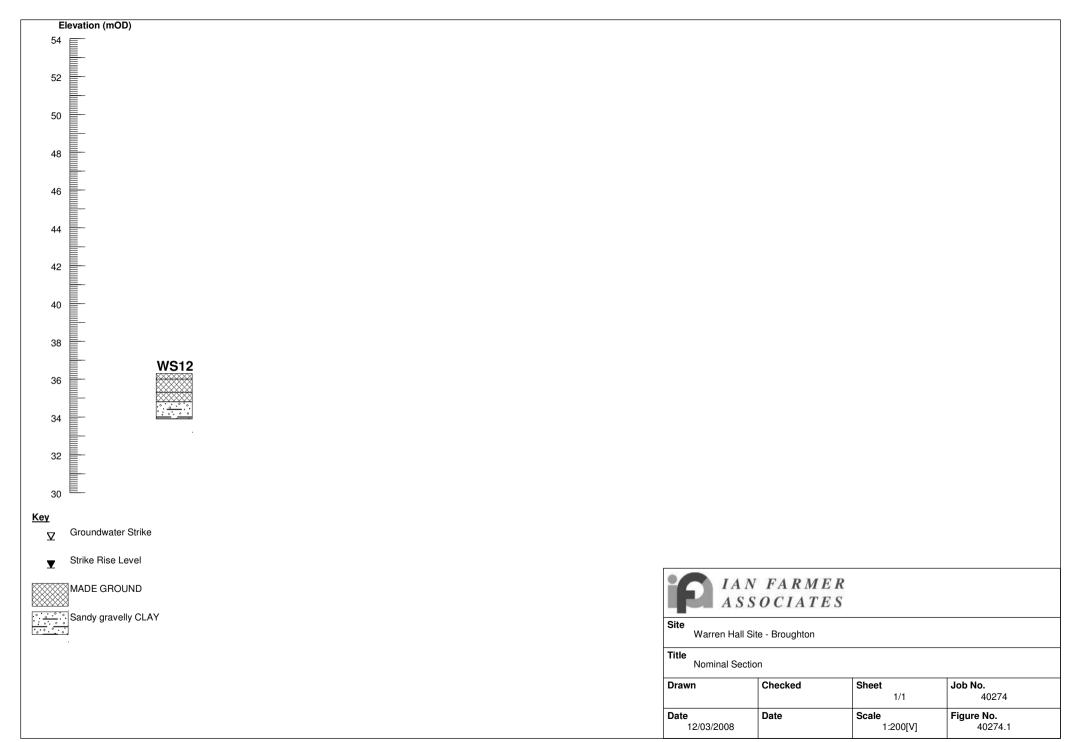
- 12.11 BRE Digest 240, 'Low-rise buildings on shrinkable clay soils: Part 1'. September 1993
- 12.12 Geotechnique, June 1983.
- 12.13 Design Manual for Roads and Bridges. Volume 7. Section 2. Highways Agency. January 1994
- 12.14 Building Research Establishment, Special Digest 1, 'Concrete in Aggressive Ground', 2001.
- 12.15 The Environmental Protection Act, Part IIA, Section 78, 1990.
- 12.16 Environment Act 1995, Section 57, DoE 1995.
- 12.17 CLR 7, 'Assessment of risks to human health from land contamination: an overview of the development of soil guideline values and related research'. DEFRA/EA, March 2002.
- 12.18 CLR 9, ' Contaminants in Soil: Collation of Toxicological Data and Intake Values for Humans' DEFRA/EA, March 2002.
- 12.19 CLR 10, 'The Contaminated Land Exposure Assessment Model (CLEA): Technical basis and algorithms'. DEFRA/EA, March 2002.
- 12.20 Generic Assessment Criteria for Human Health Risk Assessment, Nathanial CP, McCaffery C, Ashmore M, Cheng Y, Gillett A, Hooker P and Ogden RC, Land Quality Press, Nottingham, published November 2006.
- 12.21 Environmental Quality Standards, Lists 1 and 2 Dangerous Substances, EC Dangerous Substances Directive, <u>http://www.environment-agency.gov.uk/yourenv/eff/1190084/water/1182267/1182413/290939/?version=1&lan g= e</u>
- 12.22 European Waste Catalogue, 2002.
- 12.23 CLR 8, 'Potential contaminants for the assessment of contaminated land'. DEFRA/EA, March 2002.
- 12.24 Circular of 9/5/94 on 'Intervention Values for Soil Remediation', Dutch Ministry of Housing Spatial Planning and the Environment.
- 12.25 United States Environmental Protection Agency, Region 9, Preliminary Remediation Goals.
- 12.26 National Environment Protection Council. 1999. National Environment Protection (Assessment of Site Contamination) Measure: Schedule B(1) Guideline on the Investigation Levels for Soil and Groundwater.

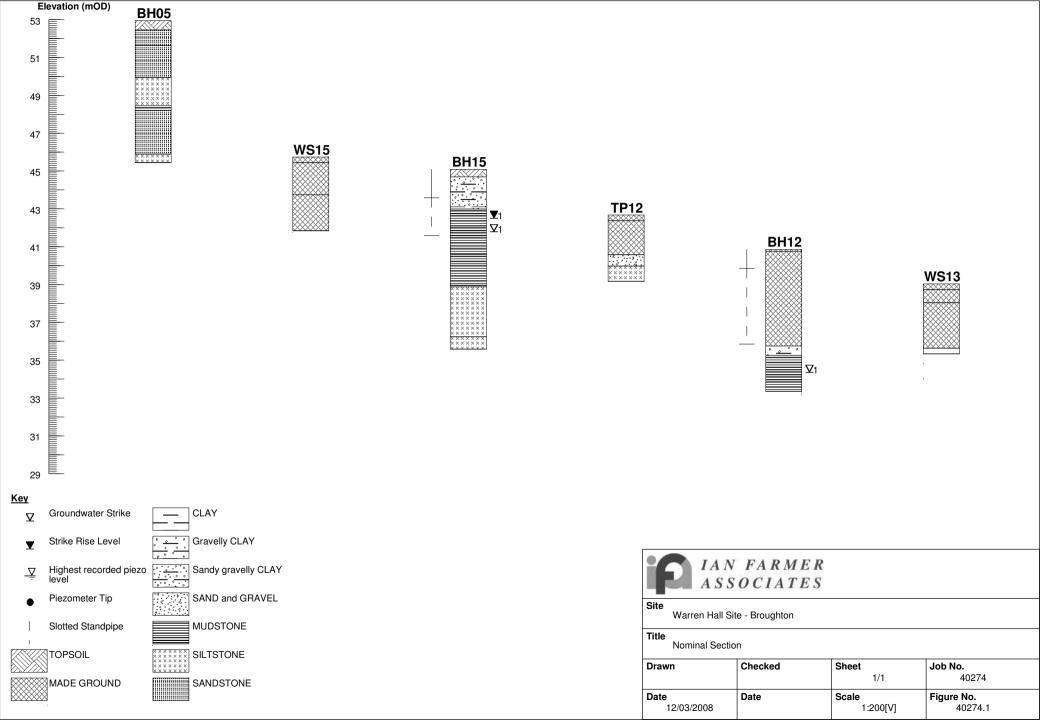


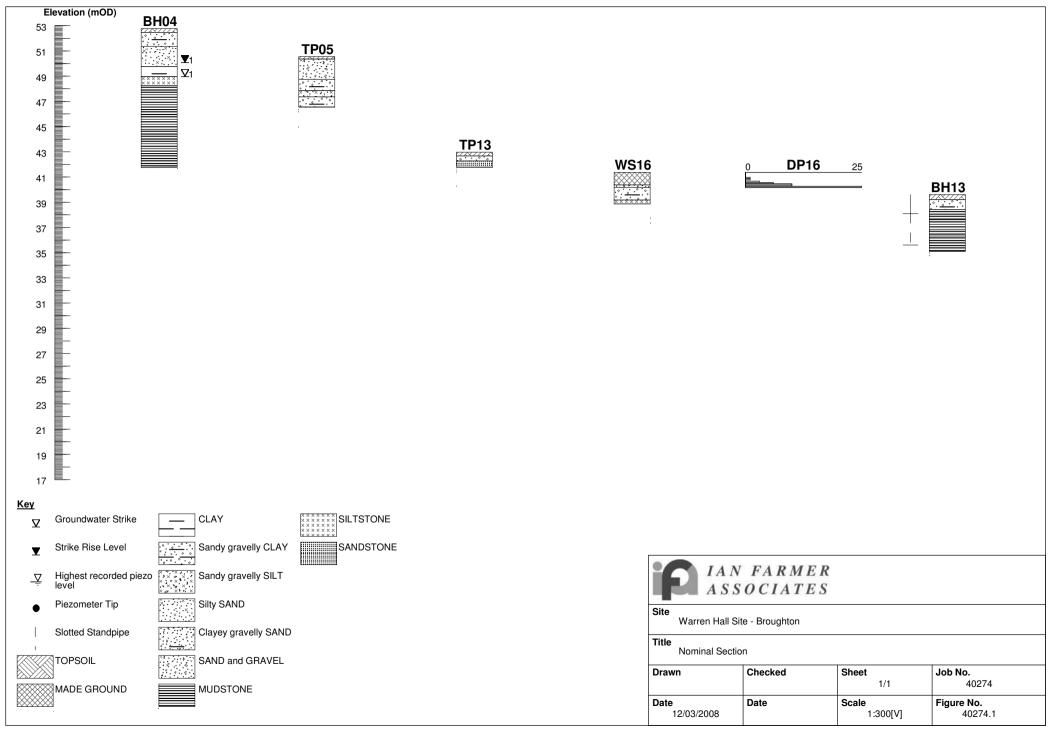

- 12.27 'Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand, Module 4: Tier 1 Soil Acceptance Criteria' New Zealand Ministry of the Environment, 1999
- 12.28 CIRIA Reports 149 to 152, 'Methane and Associated Hazards to Construction', 1995.
- 12.29 CIRIA C659, 'Assessing Risks Posed by Hazardous Ground Gases in Buildings', 2006.
- 12.30 Office of the Deputy Prime Minister, 'The Building Regulations 2000, Approved Document C, Site Preparation and Resistance to Contaminants and Moisture', 2004.
- 12.31 Building Research Establishment, Report 414, 'Protective Measures for Housing on Gas Contaminated Land', 2004
- 12.32 Wilson, S A and Haines, S, 'Site Investigation and Monitoring for Soil Gas Assessment Back to Basics', Land Contamination and Reclamation, 2005
- 12.33 Wilson S A and Card G B, 'Reliability and Risk in Gas Protection Design', 2004.
- 12.34 Boyle and Witherington, 'Guidance on Evaluation on Development Proposals on Sites where Methane and Carbon Dioxide are present, incorporating 'Traffic Lights'. Report 10627-R01-(02) for HNBC, 2006.

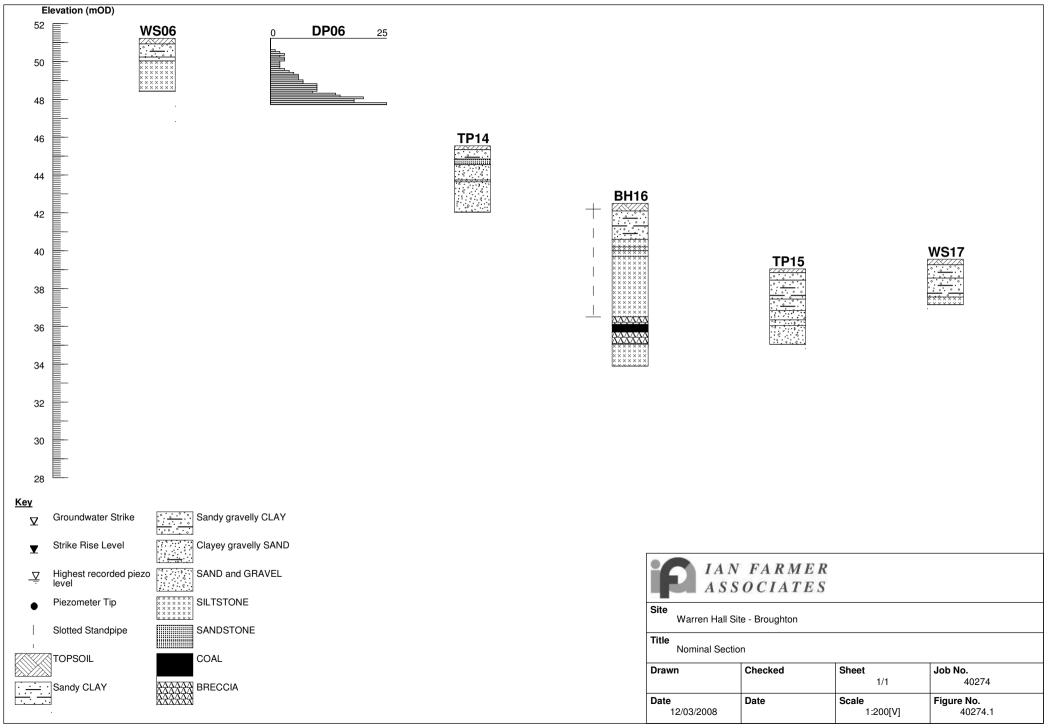

For and on behalf of Ian Farmer Associates (1998) Limited

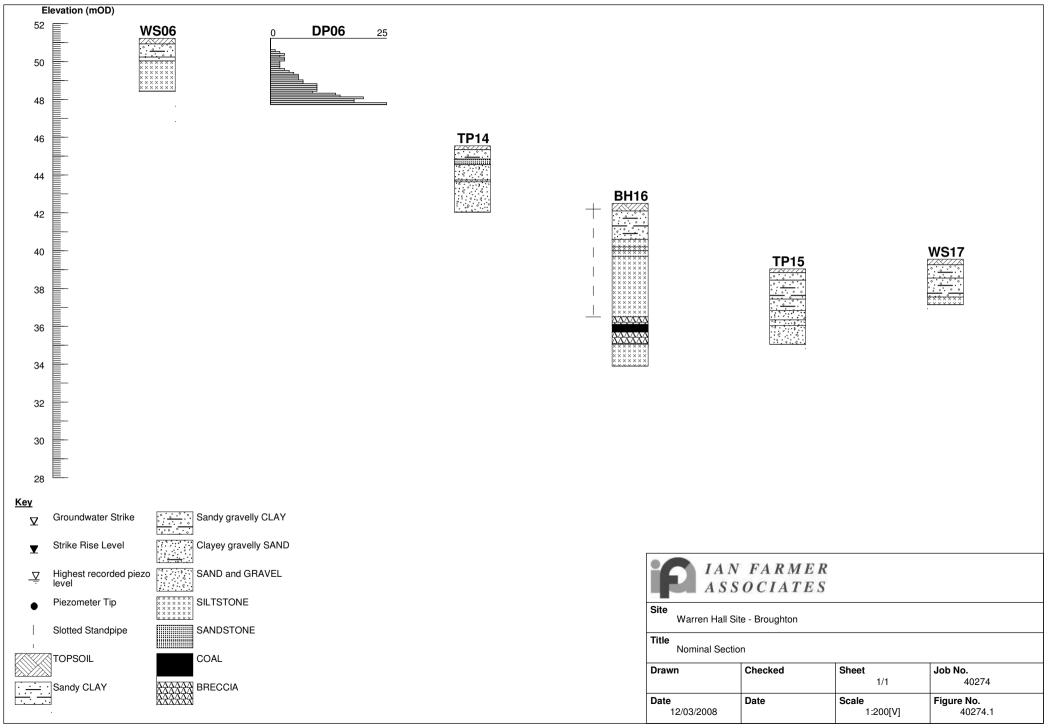

T J Downes BSc (Hons) MSc FGS Technical Manager J A Latimer BSc (Hons) FGS Director **APPENDIX 1**

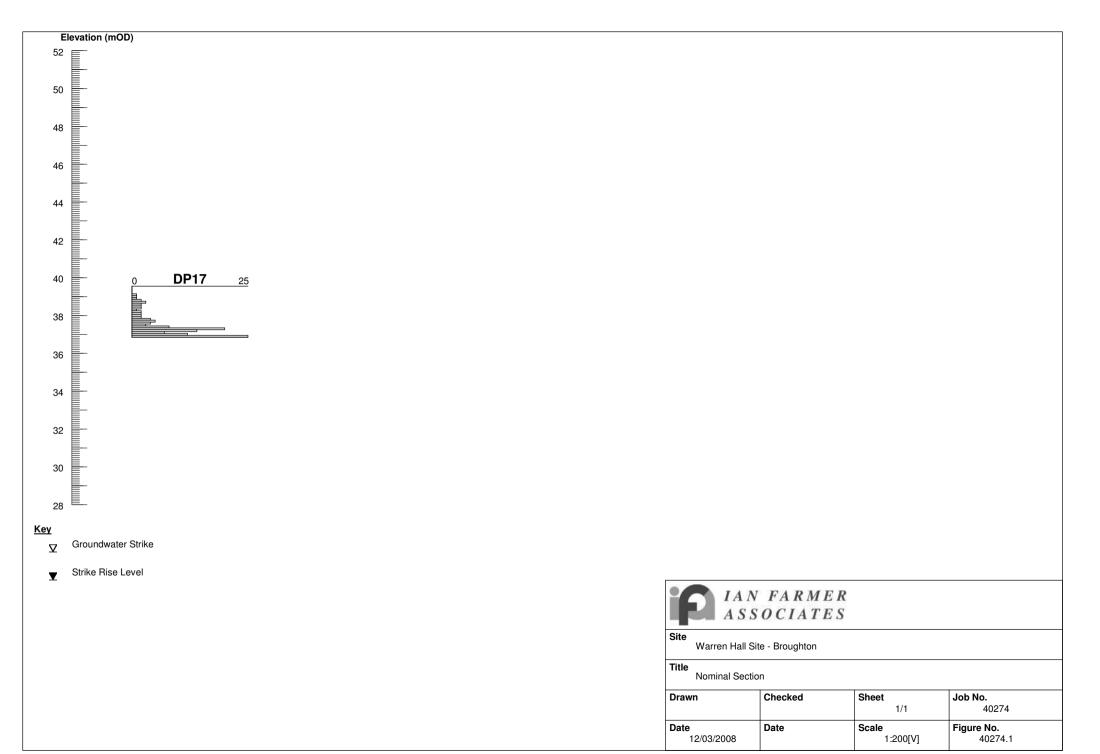

DRAWINGS

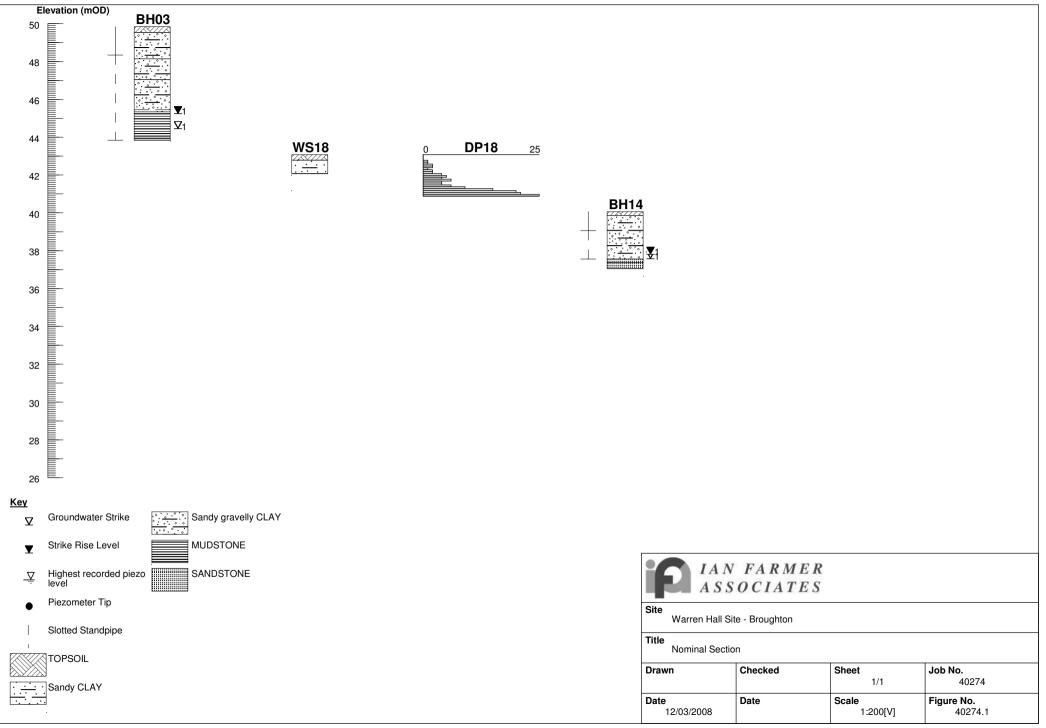


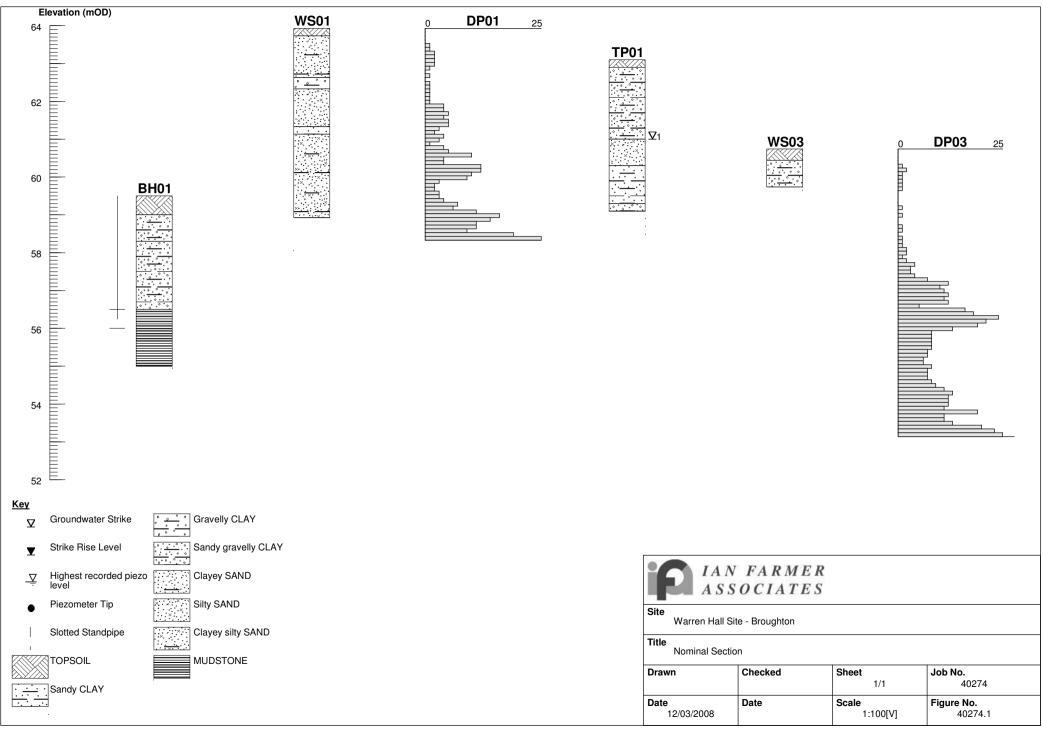


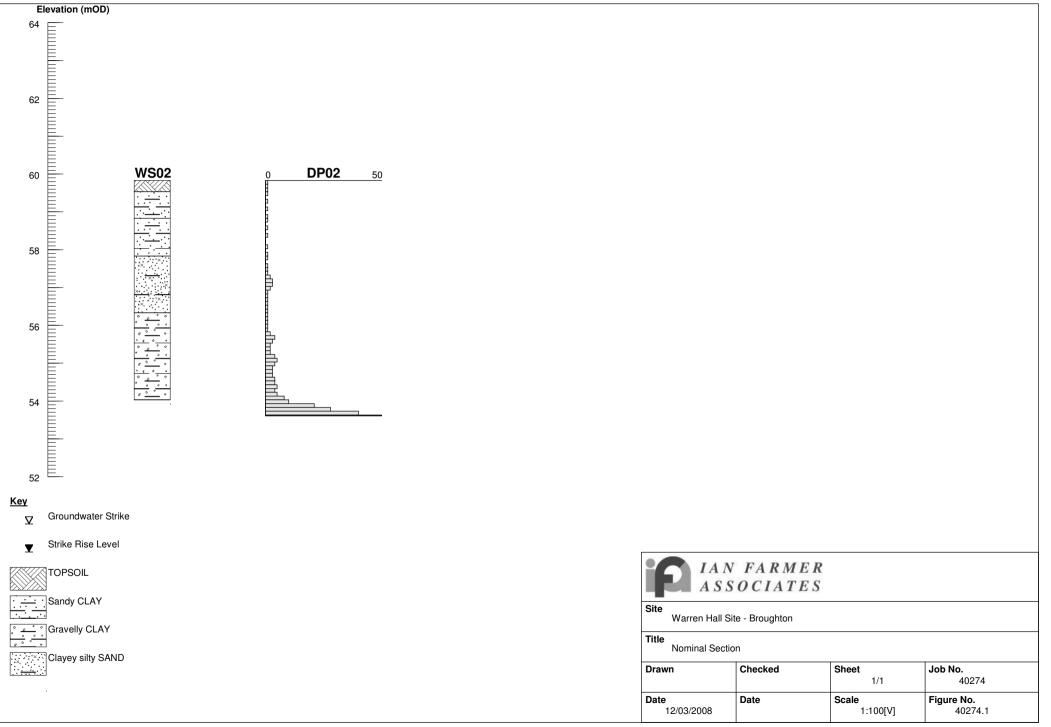


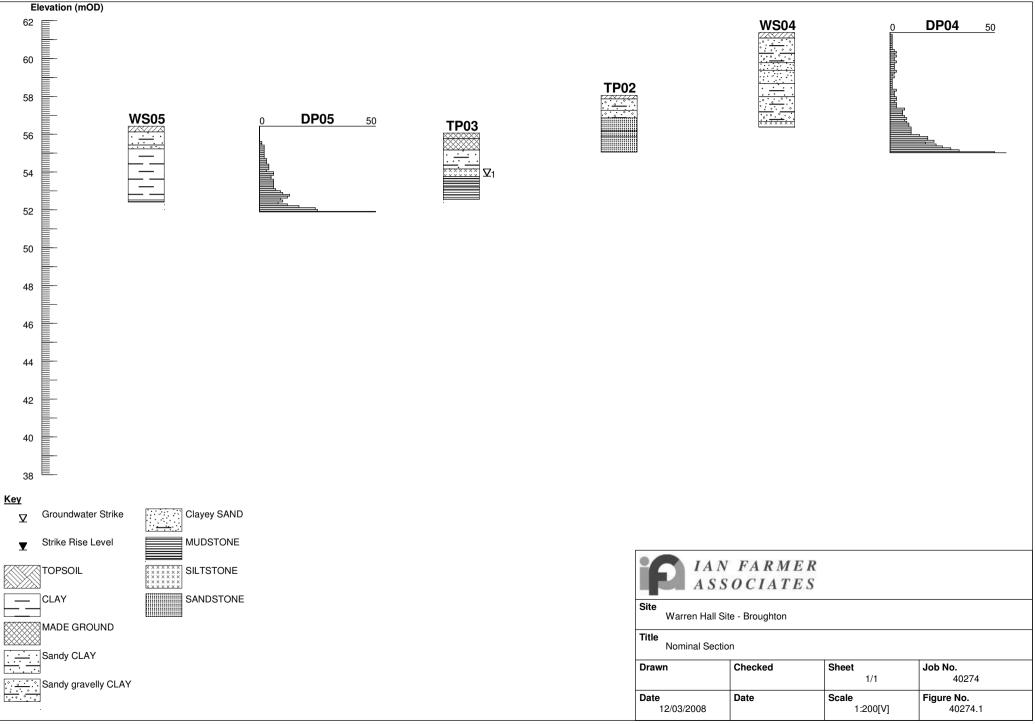


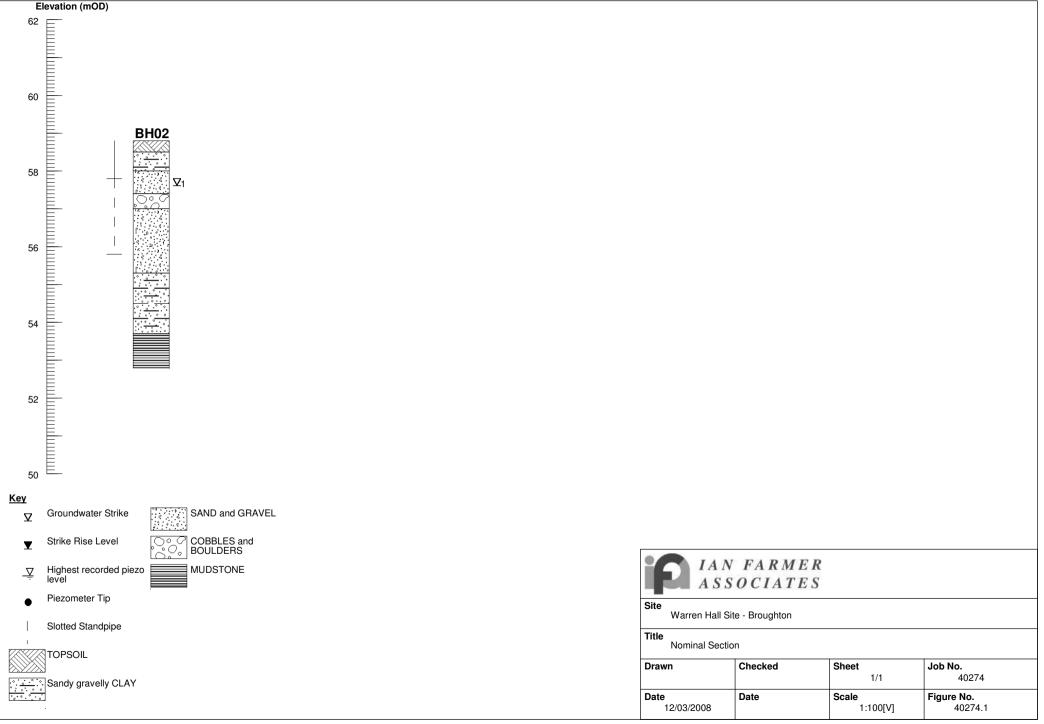












APPENDIX 2

DESIGN CONSIDERATIONS

APPENDIX 2

GUIDELINES FOR THE DESIGN OF PILES

FIRST APPROXIMATION OF WORKING LOAD

A2.1 GENERAL

The ultimate carrying capacity, Qu, of a particular pile is taken as the sum of the ultimate shaft friction resistance, Qs, and the ultimate end bearing resistance, Qb. This may be expressed as follows:-

	Qu	=	Qs + Qb
		=	f.As + q.Ab
where	f	=	unit shaft resistance
	As	=	embedded surface area of pile
	q	=	unit end bearing resistance
	Ab	=	effective cross-sectional area of pile base

A2.2 COHESIVE SOILS

A2.2.1 Shaft Resistance

The ultimate shaft resistance, f, for piles in both compression or tension in cohesive soils is determined by applying a factor to the undrained shear strength, Cs, which exists in the soils along the embedded length of the pile, and is given by:-

f = α .Cs

Where α is an adhesion factor, which for straight-shafted bored piles may be taken as 0.45 to 0.60.

Ultimate unit shaft friction should not exceed 100kN/m².

A2.2.2 End Bearing

For piles terminating in cohesive soils, the ultimate unit end bearing resistance q, is given by:-

q = Nc.Cb

where Cb is the undrained shear strength at the base of the pile

and Nc is a bearing capacity factor

The value of Nc for a cohesive material is variable, depending on the depth of the penetration of the pile into the bearing stratum. Generally, Nc could be taken to have a value of 9, except in the case of large diameter short piles where a lesser value should be used.

A2.3 **COHESIONLESS SOILS**

A2.3.1 Shaft Resistance

For piles driven in cohesionless soils the ultimate unit shaft resistance, f, may be calculated using the following method, which gives:-

	f	=	$0.5\gamma'$ (D+d) Ks tan δ	
where	γ	=	average effective unit weight of soil surrounding	
			the pile	
	D	=	depth to the pile toe or to the base of the	
			granular stratum whichever is the lesser	
	d	=	depth to the top of the granular stratum	
	δ	=	angle of friction between pile and soil	
			(see below)	
	Ks	=	a coefficient (see below)	

a coefficient (see below)

VALUES OF Ks AND δ

	δ	Ks			
Pile Type		Rela	tive Density		
		Low	High	Tension Piles	
Steel	20°	0.5	1.5	0.5	
Concrete	0.75φ	1.0	2.0	0.5	

The value of ϕ may be interpreted from standard penetration tests, using published figures.

For bored and cast-in-place piles, $\delta = 22^{\circ}$ and Ks = 1 should be used to allow for loosening of the soil during boring.

It has been found that the ultimate unit shaft resistance does not exceed 100kN/m² and therefore this value should not be exceeded in design.

A2.3.2 End Bearing

The unit ultimate end bearing resistance (q) of piles in cohesionless soils may be calculated as follows:-

	q	=	γ'.D.Nq
where	γ	=	average effective unit weight of soil surrounding the pile
	D	=	depth to pile toe
	Nq	=	bearing capacity factor

Values for Nq, where piles penetrate the bearing stratum by more than five diameters, are given in published figures. In addition, the ultimate unit base resistance should not exceed a value of 11,000kN/m². For bored and cast-in-place piles the value of Nq used should correspond to loose soil conditions.

A2.4 FACTORS OF SAFETY

A2.4.1 Cohesive and Non-cohesive Soils

For cohesive and non-cohesive soils a factor of safety of 3 may be used to obtain the allowable or safe carrying capacity of piles from the ultimate carrying capacity.

APPENDIX 3

CONTAMINATION ASSESSMENT

APPENDIX 3

GENERAL NOTES ON CONTAMINATION ASSESSMENT

A3.1 STATUTORY FRAMEWORK AND DEFINITIONS

A3.1.1 The statutory definition of contaminated land is defined in the Environmental Protection Act 1990, ref 12.15, which was introduced by the Environment Act 1995, ref 12.16;

'Land which appears to the local authority in whose area it is situated to be in such a condition, by reason of substances in, on or under the land, that -

- (a) significant harm is being caused or there is a significant possibility of such harm being caused; or
- (b) pollution of controlled waters is being, or is likely to be, caused.'
- A3.1.2 The UK guidance on the assessment of contaminated has developed as a direct result of the introduction of these two Acts. The technical guidance supporting the new legislation has been summarised in a number of key documents collectively known as the Contaminated Land Reports (CLRs), a proposed series of twelve documents. Seven were originally published in March 1994, four more were published in April 2002, while the last remaining guidance document, CLR 11, ref 12.4 was published in 2004.
- A3.1.3 In establishing whether a site fulfils the statutory definition of 'contaminated land' it is necessary to identify, whether a pollutant linkage exists in respect of the land in question and whether the pollutant linkage:
 - is resulting in significant harm being caused to the receptor in the pollutant linkage,
 - presents a significant possibility of significant harm being caused to that receptor,
 - is resulting in the pollution of the controlled waters which constitute the receptor, or
 - is likely to result in such pollution.
- A3.1.4 A 'pollutant linkage' may be defined as the link between a contaminant 'source' and a 'receptor' by means of a 'pathway'.

A3.2 ASSESSMENT METHODOLOGY

A3.2.1 The guidance proposes a four-stage assessment process for identifying potential pollutant linkages on a site. These stages are set out in the table below:

No.	Process	Description
1	Hazard Identification	Establishing contaminant sources, pathways and receptors (the conceptual model).
2	Hazard Assessment	Analysing the potential for unacceptable risks (what linkages could be present, what could be the effects).
3	Risk Estimation	Trying to establish the magnitude and probability of the possible consequences (what degree of harm might result and to what receptors, and how likely is it).
4	Risk Evaluation	Deciding whether the risk is unacceptable.

- A3.2.2 Stages 1 and 2 develop a 'conceptual model' based upon information collated from desk based studies, and frequently a walkover of the site. The walkover survey should be conducted in general accordance with CLR 2, ref 12.2. The formation of a conceptual model is an iterative process and as such, it should be updated and refined throughout each stage of the project to reflect any additional information obtained.
- A3.2.3 The extent of the desk studies and enquiries to be conducted should be in general accordance with CLR 3, ref 12.1. The information from these enquiries is presented in a desk study report with recommendations, if necessary, for further work based upon the conceptual model. CLR 8, ref. 12.23, together with specific DoE 'Industry Profiles' provides guidance on the nature of contaminants relating to specific industrial processes.
- A3.2.4 If potential pollutant linkages are identified within the conceptual model, a Phase 2 site investigation and report will be recommended. The investigation should be planned in general accordance with CLR 4, ref 12.5. The number of exploratory holes and samples collected for analysis should be consistent with the size of the site and the level of risk envisaged. This will enable a contamination risk assessment to be conducted, at which point the conceptual model can be updated and relevant pollutant linkages can be identified.
- A3.2.5 A two-stage investigation may be more appropriate where time constraints are less of an issue. The first stage investigation being conducted as an initial assessment for the presence of potential sources, a second being a more refined investigation to delineate wherever possible the extent of the identified contamination.
- A3.2.6 All site works should be in general accordance with the British Standards, BS 5930:1999, ref. 12.7 and BS 10175:2001, ref 12.6.
- A3.2.7 The generic contamination risk assessment screens the results of the chemical analysis against generic guidance values. Soils will be compared with the available Soil Guideline Values (SGVs) as published by the Department of Environment Food and Rural Affairs (DEFRA) and The Environment Agency (EA), and developed using the Contaminated Land Exposure Assessment (CLEA) Model.
- A3.2.8 Where there are no currently available SGVs for specific soil contaminants, the results of the soil analyses will be compared to Generic Assessment Criteria (GAC), determined by LQM and CIEH in accordance with current legislation and guidance.
- A3.2.9 Chemical laboratory test results are processed as follows. A statistical analysis of the results is conducted, as detailed in CLR 7, ref 12.17. Individual concentrations are compared to the selected guideline values to identify concentrations of contaminants that are above the selected screening criteria.
- A3.2.10 The mean value test is applied to determine whether the mean characteristics of the selected soil unit present a significant possibility of significant harm to human health. The significance of the data is further tested using the maximum value test. This determines whether the highest recorded contaminant concentrations are from the same statistical distribution or whether they may represent a 'hot spot'.
- A3.2.11 Where the risk estimation identifies significant concentrations of one or more contaminants, a further risk evaluation needs to be undertaken.
- A3.2.12 The risk evaluation will address the potential pollutant linkages between an identified source of contamination and the likely receptors both on and off site.
- A3.2.13 The potential receptors include:
 - 1) Humans current site occupants, construction workers, future site users and neighbouring site users.

- 2) Controlled Waters surface water and groundwater resources
- 3) Plants current and future site vegetation
- 4) Building materials
- A3.2.14 The potential hazards to be considered in relation to contamination are:
 - a) Ingestion and inhalation.
 - b) Uptake of contaminants via cultivated vegetables.
 - c) Dermal contact
 - d) Phytotoxicity (the prevention or inhibition of plant growth)
 - e) Contamination of water resources
 - f) Chemical attack on building materials and services
 - g) Fire and explosion
- A3.2.15 Dependent on the outcome of the initial, generic contamination risk assessment, further detailed assessment of the identified risks may be required.

		Assessment Criteria	Resid	ential with plant up	take	Resid	lential w/o plant upt	ake	Co	mmercial / Indu	ıstrial
			1% SOM	2.5% SOM	5% SOM	1% SOM	2.5% SOM	5% SOM	1% SOM	2.5% SOM	5% SOM
	Benzo(a)pyrene (BaP)	LQM CIEH GAC	1.12	1.08	1.09	1.3	1.31	1.32	29.7	29.7	29.9
	Dibenzo(a,h)anthracene	LQM CIEH GAC	1.14	1.13	1.1	1.3	1.34	1.32	29.7	29.7	29.9
PAH	Fluorene	LQM CIEH GAC	38.4	91.4	184	2770	2640	2700	59000	59400	59500
	Napthalene	LQM CIEH GAC	3.47	8.47	17	6.94	17.1	33.7	290	720	1440
	Napthalene	CLEA SGV 19 (DRAFT)	7	17	34	7	17	34	290	720	1400
	Chlorobenzene	LQM CIEH GAC	10.6	24.8	50	32.9	79.3	155	140000	143000	143000
	1,2-dichloroethane (DCA)	LQM CIEH GAC	0.00791	0.0172	0.0328	0.0118	0.0256	0.0486	0.536	1.16	2.2
	Hexachlorobutadiene (HCBD)	LQM CIEH GAC	0.00422	0.0103	0.0206	0.0496	0.12	0.23	1.98	4.72	8.77
	Tetrachloroethane (PCA)	LQM CIEH GAC	0.562	1.25	2.38	3.6	8.05	15.3	150	332	620
	Tetrachloroethene (PCE)	LQM CIEH GAC	1.01	2.32	4.5	1.46	3.39	6.58	63.1	146	283
	1,1,1-Trichloroethane (TCA)	LQM CIEH GAC	11.7	27.2	53.1	12.9	29.8	57.9	552	1280	2490
	Trichloroethene (TCE)	LQM CIEH GAC	0.134	0.308	0.598	0.15	0.346	0.673	6.42	14.8	28.8
	Trichloromethane	LQM CIEH GAC	0.888	1.99	3.86	1.72	3.91	7.52	79.4	180	345
	Vinyl Chloride	LQM CIEH GAC	0.000953	0.00184	0.00329	0.00129	0.00248	0.00447	0.0587	0.113	0.203
	Atrazine	LQM CIEH GAC	0.0204	0.0489	0.0984	7.04	6.86	7.03	152	157	157
	Phenol	CLEA SGV 8	78	150	280	21900	34400	37300	21900	43000	78100
	Arsenic	CLEA SGV 1		20	1		20		500		
	Cadmium	CLEA SGV 3	1 (pH 6)	2 (pH 7)	8 (pH 8)		30			1400	
	Chromium	CLEA SGV 4		130			200		5000		
	Inorganic Mercury	CLEA SGV 5		8		_	15		_	480	_
	Nickel	CLEA SGV 7		50		75			5000		
Metals	Selenium	CLEA SGV 9		35			260			8000	
	Lead	CLEA SGV 10		450			450			750	
	Beryllium	LQM CIEH GAC		12.1		84.9			1950		
	Copper	LQM CIEH GAC		111		2080		45700			
	Vanadium	LQM CIEH GAC		140		150		4250			
	Zinc	LQM CIEH GAC		330			8250			188000	

A3.3 Generic Guideline values used in contamination risk assessment

Appendix 3 pages iii/i-iii/i

	Aliphatic EC 5-6	LQM CIEH GAC	2.11	3.72	6.38	2.11	3.72	6.39	95.3	168	288
	Aliphatic EC C6-8	LQM CIEH GAC	5.37	11.9	22.7	5.37	11.9	22.7	242	535	1020
	Aliphatic EC >8-10	LQM CIEH GAC	1.46	3.55	7	1.46	3.56	7.05	65.9	160	317
	Aliphatic EC >10-12	LQM CIEH GAC	8.53	20.8	40.1	8.6	21.2	41.7	29900	30600	30400
	Aliphatic EC >12-16	LQM CIEH GAC	40.7	93.4	163	42.1	101	187	29900	30600	30400
	Aliphatic EC >16-35	LQM CIEH GAC	16400	16400	16300	27600	27600	26800	617000	631000	627000
	Aliphatic EC >35-44	LQM CIEH GAC	16400	16400	16300	27600	27600	26800	617000	631000	627000
TRUCIUG	Aromatic 5-7 (Benzene)	LQM CIEH GAC	0.575	1.33	2.57	0.613	1.41	2.75	26.9	26.9	121
TPHCWG	Aromatic EC >7-8 (Toluene)	LQM CIEH GAC	0.624	1.46	2.85	0.694	1.63	3.18	30.4	30.4	139
	Aromatic EC >8-10	LQM CIEH GAC	1.09	2.67	5.3	2.39	5.88	11.6	107	107	513
	Aromatic EC >10-12	LQM CIEH GAC	1.94	4.76	9.44	14.2	34.1	63.9	625	625	2600
	Aromatic EC >12-16	LQM CIEH GAC	2.19	5.39	10.7	72.7	152	235	12200	12500	12400
	Aromatic EC >16-21	LQM CIEH GAC	115	132	133	291	336	362	9190	9400	9350
	Aromatic EC >21-35	LQM CIEH GAC	157	161	157	417	417	404	9250	9460	9410
	Aromatic EC >35-44	LQM CIEH GAC	157	161	157	417	417	404	9250	9460	9410
	Aliphatic & Aromatic EC >44-70	LQM CIEH GAC	174	179	174	417	417	404	9250	9460	9410
	Benzene	CLEA SGV 12 (DRAFT)	0.024	0.056	0.109	0.038	0.087	0.168	1.66	3.8	7.32
BTEX	Toluene	CLEA SGV 15	3	7	14	3	8	15	150	350	680
DILX	Ethylbenzene	CLEA SGV 16	9	21	41	16	41	80		4800	
	Xylenes	CLEA SGV 18 (DRAFT)	6	15	30	8	19	38	340	825	1650

A3.3 Generic Guidance Values Used Within Contamination Risk Assessment

APPENDIX 4

GAS GENERATION

APPENDIX 4

GENERAL NOTES ON GAS GENERATION

A4.1 GENERAL

- A4.1.1 In the past, a series of guidance documents were published by CIRIA, ref.12.28, providing advice on hazards associated with methane. This earlier guidance has been consolidated in CIRIA Document C659, ref. 12.29 to provide a risk based approach to gas contaminated land. It is recommended that guidance in C659 is adopted to provide a consistent approach in dealing with ground gas contamination.
- A4.1.2 This guidance is based on a similar approach to that for dealing with contaminated soil. The presence of hazardous gases could be deemed to be the 'source' in a 'pollutant linkage' that could lead to the conclusion that significant harm is or could be caused to people, buildings or the environment. In such circumstances the land could be deemed 'contaminated', ref. 12.15.
- A4.1.3 A developer must therefore undertake a gas risk assessment, sufficient to demonstrate to the local authority that the proposals mitigate any hazards associated with ground gas. The authority enforces compliance with Approved Document Part C of the Building Regulations, ref. 12.30.

A4.2 APPROACH

- A4.2.1 A flow chart detailing the approach to assessing a site is given in CIRIA document C659, Figure 1.1. This may be summarised as follows.
 - Carry out Phase 1 desk study, including initial conceptual model
 - Assess site, potential presence of gas / potential unacceptable risk / identify further action, if necessary
 - Monitor site
 - Assessment of Risk
 - Recommendations / remediation
 - Validation

A4.3 POLLUTANT LINKAGE ASSESSMENT

- A4.3.1 A pollutant linkage assessment is presented in Appendix 3 of the Phase 1 Desk Study Report.
- A4.3.2 Using the risk model in the desk study, the pollutant linkage can be identified and a preliminary estimate of risk undertaken. If there is no significant pollutant linkage identified there is no risk. If there is a very low risk, it is likely that no further assessment is required. If further assessment is necessary, then gas monitoring is required.

A4.4 SITE MONITORING

A4.4.1 For sites with low generation potential, giving consistently low concentrations of soil gas under the worst-case conditions, a limited programme of monitoring would be appropriate. Where high or variable concentrations are anticipated or recorded, an extended programme of monitoring would be appropriate. The following guideline has been proposed, ref. 12.32.

			Generation potential of source				
		Very low	Low	Moderate	High	Very high	
ity of ment	Low (Commercial)	4/1	6/2	6/3	12/6	12/12	
Sensitivity of development	Moderate (Flats)	6/2	6/3	9/6	12/12	24/24	
Se de	High (Residential with gardens)	6/3 ³	9/6	12/6	24/12	24/24	

Notes

- 1. First number is minimum number of readings and second number is minimum period in months, for example 4/1 Four sets of readings over 1 month.
- 2. At least two sets of readings must be at low and falling atmospheric pressure (but not restricted to periods below <1000mb) known as worst case conditions (see Boyle and Witherington, 2006).
- 3. The frequency and period stated are considered to represent typical minimum requirements. Depending on specific circumstances fewer or additional readings may be required (e.g. any such variation subject to site specific justification). The NHBC guidance is also recommending these periods/frequency of monitoring (Boyle and Witherington, 2006)
- 4. Historical data can be used as part of the data set.
- 5. Not all sites will require gas monitoring however, this would need to be confirmed with demonstrable evidence.
- 6. Placing high sensitivity end use on a high hazard site is not normally acceptable unless the source is removed or treated to reduce its gassing potential. Under such circumstances long-term monitoring may not be appropriate or required.
- A4.4.2 Before taking any readings, zero the instrument, record atmospheric pressure and temperature.
- A4.4.3 Gas flow should be recorded, giving the range of pressures, ensuring positive or negative flow is recorded.
- A4.4.4 Record gas levels, recording peak and steady. Where steady state not obtained within 3 minutes, record change in concentration, where concentrations are decreasing, always recode peak value. For very high concentrations, record for longer period of up to 10 minutes.

A4.5 ASSESSMENT OF RISK AND RECOMMENDATIONS

- A4.5.1 The main method of characterising a site is the method described by Wilson and Card, ref. 12.33 and is termed Situation A. This can be used for all types of development except conventional low-rise housing with suspended ground floor and ventilated underfloor void.
- A4.5.2 Low rise housing, Situation B, was developed by Boyle and Witherington, ref. 12.34 and was developed for the NHBC for classifying gassing sites for houses with suspended ground floor slab with ventilated void.

A4.6 SITUATION A

A4.6.1 This system proposed by Wilson and Card, ref. 12.33 was originally developed in CIRIA Report 149, ref. 12.24.

- A4.6.2 The method uses both gas concentrations and borehole flow rate for methane and carbon dioxide to define a Characteristic Situation for a site.
- A4.6.3 Gas Screening Value (litre/hr) = borehole flow rate (litre/hr) x gas concentration (%). The GSV is determined for methane and carbon dioxide and the worst case adopted. The Characteristic Situation can then be determined from the table below. The GSV can be exceeded if the conceptual model indicates it is safe to do so, and other factors may lead to a change in the Characteristic Situation.

Characteristic Situation	Risk Classification	Gas screening value (CH ₄ or CO ₂ (1/hr) ¹	Additional factors	Typical source of generation
1	Very low risk	<0.07	Typically methane $\leq 1\%$ and/or carbon dioxide $\leq 5\%$. Otherwise consider increase to Situation 2	Natural soils with low organic content "Typical" Made Ground
2	Low risk	<0.7	Borehole air flow rate not to exceed 70l/hr. Otherwise consider increase to Characteristic Situation 3	Natural soil, high peat/organic content. "Typical" Made Ground
3	Moderate risk	<3.5		Old landfill, inert waste, mineworking flooded
4	Moderate to high risk	<15	Quantitative risk assessment required to evaluate scope of protective measures	Mineworking – susceptible to flooding, completed landfill (WMP 26B criteria)
5	High risk	<70		Mineworking unflooded inactive with shallow workings near surface
6	Very high risk	>70		Recent landfill site

1. Site characterisation should be based on gas monitoring of concentrations and borehole flow rates for the minimum periods defined in A7.4.1

- 2. Source of gas and generation potential/performance must be identified.
- 3. If there is no detectable flow use the limit of detection of the instrument.

A4.6.4 The Characteristic Situation can be used to define the scope of gas protective measures required.

Characteristic situation		building (Not low-rise itional housing)	Office/commerci	al/industrial development
	Number of levels of protection	Typical scope of protective measures	Number of levels of protection	Typical scope of protective measures
1	None	No special precautions	None	No special precautions
2	2	 a) Reinforced concrete cast in situ floor slab (suspended non- suspended or raft) with at least 1200g DPM and underfloor venting b) Beam and block or pre-cast concrete and 	1 to 2	 a) Reinforced concrete cast in-situ floor slab (suspended non-suspended or raft) with at least 1200g DPM b) Beam and block or pre cast concrete slab and minimum 2000g
		2000g DPM / reinforced gas membrane and		DPM/reinforced gas membrane
		underfloor venting All joints and penetrations sealed		c) Possibly underfloor venting or pressurisation in combination with a) and b) depending on use
				All joints and penetrations sealed
3	2	All types of floor slab as above. All joints and penetrations sealed. Proprietary gas resistant membrane and passively ventilated or positively pressurised underfloor sub-space	1 to 2	All types of floor slab as above. All joints and penetrations sealed. Minimum 2000g/reinforced gas proof membrane and passively ventilated underfloor sub-space or positively pressurised underfloor sub-space
4	3	All types of floor slab as above. All joints and penetrations sealed. Proprietary gas resistant membrane and passively ventilated underfloor subspace or positively pressurised underfloor sub-space, oversite capping or blinding and in ground venting layer	2 to 3	All types of floor slab as above. All joints and penetration sealed. Proprietary gas resistant membrane and passively ventilated or positively pressurised underfloor sub-space with monitoring facility

Characteristic situation		building (Not low-rise itional housing)	Office/commercia	al/industrial development
5	4	Reinforced concrete cast in situ floor slab (suspended, non- suspended or raft).	3 to 4	Reinforced concrete cast in-situ floor slab (suspended, non- suspended or raft).
		All joints and penetrations sealed. Proprietary gas resistant membrane and		All joints and penetrations sealed. Proprietary gas resistant membrane and passively ventilated or positively
		ventilated or positively pressurised underfloor sub-space, oversite capping and in ground venting wells or		pressurised underfloor sub-space with monitoring facility. In ground venting wells
		barriers		or barriers
6	5	Not suitable unless gas regime is reduced first and quantitative risk assessment carried out to assess design of protection measures in conjunction with	4 to 5	Reinforced concrete cast in-situ floor slab (suspended, non- suspended or raft). All joints and penetrations sealed.
		foundation design		Proprietary gas resistant membrane and actively ventilated or positively pressurised underfloor sub-space with monitoring facility, with monitoring. In ground venting wells and reduction of gas regime.

- 1. Typical scope of protective measures may be rationalised for specific developments on the basis of quantitative risk assessments.
- 2. Note the type of protection is given for illustration purposes only. Information on the detailing and construction of passive protection measures is given in BR414, ref. 12.31.
- 3. In all cases there should be minimum penetration of ground slabs by services and minimum number of confined spaces such as cupboards above the ground slab. Any confined spaces should be ventilated.
- 4. Foundation design must minimise differential settlement particularly between structural elements and ground-bearing slabs.
- 5. Commercial buildings with basement car parks, provided with ventilation in accordance with the Building Regulations, may not require gas protection for characteristic situations 3 and 4.
- 6. Floor slabs should provide an acceptable formation on which to lay the gas membrane. If a block beam floor is used it should be well detailed so it has no voids in it that membranes have to span, and all holes for service penetrations should be filled. The minimum density of the blocks should be 600kg/m³ and the top surface should have a 4:1 sand cement grout brushed into all joints before placing any membrane (this is also good practice to stabilise the floor and should be carried out regardless of the need for gas membrane).
- 7. The gas-resistant membrane can also act as the damp-proof membrane.

NTKINS

Warren Hall Geotechnical Overview Report

September 2010

Plan Design Enable

Warren Hall

Plan Design Enable

Geotechnical Overview Report

September 2010

Notice

This document and its contents have been prepared and are intended solely for The Welsh Assembly Government's information and use in relation to the redevelopment of the site at Warren Hall by cut and fill methods for commercial end use.

Atkins assumes no responsibility to any other party in respect of or arising out of or in connection with this document and/or its contents.

Document History

JOB NUMBER: 5078488.106			DOCUMENT REF: GTG20082593/5078488.106/32905			
0	Final for issue	СК	JH	PC	HJ	20.09.10
1	Final for issue	СК	JH	PC	HJ	28.09.10
Revision	Purpose Description	Originated	Checked	Reviewed	Authorised	Date

Contents

Sec	ction	Page
1.	Introduction	3
2.	Available Information	3
3.	The Site	4
3.1	Description and Site History	4
3.2	Proposed Designs	4
4.	Published Geology	5
5.	Ground Conditions	5
5.1	Topsoil	5
5.2	Made Ground & Infilled Hollows	5
5.3	Glacial Till	6
5.4	Bedrock	6
5.5	Groundwater	7
5.6	Laboratory Testing	7
6.	2010 Earthworks Contract: Phase 1 Area	8
6.1	Introduction	8
6.2	Siteworks	8
6.3	Earthworks Specification and Advance Testing	9
7.	Future Site Enabling Works and Dewatering for Phase 1 Area	10
7.1	Soils	10
7.2	Rock	11
7.3	Dewatering	11
7.4	Estimation of Reuse of Materials	12
8.	Conclusions and Recommendations	13

Drawings and Figures

20082593/sm/01: Exploratory Hole Location Plan

5078488/PL/007: Earthworks Key Plan

Figure 1: Extract from Geological Map

Appendices

Appendix A: Additional Trial Pitting Records

Appendix B: Additional Laboratory Test Results

Appendix C: Phase 1 Earthworks Specification Appendices (6/1, 6/2 and 6/3)

1. Introduction

The Welsh Assembly Government intends to develop a sloping site at Warren Hall, Broughton, to the south of Chester by cut and fill methods for use as a business park. Atkins has been instructed to prepare a Geotechnical Overview Report based on the available information to date. The Welsh Assembly Government has owned the site for a number of years and several ground investigations have been undertaken by various companies at different times on and adjacent to the site. An earthworks contract was begun during February 2010. This contract was terminated before the majority of the earthworks were complete due to poor ground and weather conditions.

Involvement in the Warren Hall scheme and adjacent Warren Bank Interchange improvements has resulted in Atkins gaining a considerable understanding of the ground conditions in the area. On both schemes, the ground conditions have been challenging: the Warren Bank Interchange scheme necessitated ground treatment beneath new embankments in the form of vibro-stone columns and at the Warren Hall site, high groundwater levels have caused problems with excavations and in the re-use of the excavated materials.

This report covers the ground conditions over the whole site, and focuses particularly upon the Phase 1 area where the earthworks contract was begun.

The purpose of this report is to provide an overview of the geotechnical conditions at the site and provide recommendations for further work.

2. Available Information

The following information has been used in the preparation of this report:

- 1. Atkins' local knowledge from surrounding sites and from ongoing involvement in the site
- 2. BGS Geological Maps and Memoirs
- 3. Exploration Associates 1975 Report for proposed Hawarden Bypass
- 4. Stats Ltd (SL) July 1989 "Proposed Development at Warren Hall Report on Ground Investigation". Report Reference M 1459
- 5. Exploration Associates (EA) April 1995 "Warren Hall: Highway Infrastructure Factual Report on Ground Investigation". Report Reference 125001
- 6. D. Nichol, 2001 "Geo-Engineering along the A55 North Wales Coast Road", , Q.J.Eng Geol **34**, 51-64.
- 7. Ian Farmers Associates (IFA) February 2008 "Warren Hall, Broughton Factual Report on Ground Investigation". Report Reference W08/40274
- 8. Ian Farmer Associates (IFA) February 2008. "Warren Hall, Broughton" Desk Study. Report Reference W07/40274-1
- 9. Ian Farmer Associates (IFA) April 2008. "Warren Hall, Broughton: Interpretative Report on Ground Investigation: Development Plateaus". Report Reference W07/40274-3
- Opus International Consultants (Uk) Ltd (OIC) July 2008 "Geo-Environmental Ground Investigation for the Warren Hall Development, Broughton, Flintshire, North Wales" Appraisal Report of Ian Farmer's Desk Study, Factual and Interpretative Reports. Reference RC4677/39/WJG/AC/LP.

Plus the following information for the Phase 1 area only:

- Atkins Ltd. (AL) October 2009: 3 no. Trial Pits excavated for additional confirmation of ground conditions beneath proposed Lesters Lane embankment for Warren Bank Interchange scheme. (Presented in Appendix A)
- 12. Jacobs Engineering (JE) January 2010: 10 no. Trial Pits excavated under the direction of Atkins for assessment of the materials for reuse in proposed earthworks. (Presented in Appendix A)
- 13. Examination of cut areas between February and April 2010

3. The Site

3.1 Description and Site History

The site is located at the approximate National Grid Reference SJ326 628, approximately 1.5km to the south west of Broughton, Flintshire, and adjacent to Warren Bank Interchange, where the A5104 meets the A55 trunk road. The interchange is currently under redevelopment, with Atkins as designer.

The site is bounded by the A5104 to the north and by Lesters Lane to the east. To the west lies Warren Hall, Warren Farm, an associated pond and the south eastern corner of Gravelhole Wood. A small watercourse and an associated small valley feature, Warren Dingle, forms the southern site boundary.

The site comprises an east facing grassed slope which falls from about 65m AOD in the west to around 35m AOD at Lesters Lane in the east.

At the time of writing this report, some cut and fill operations described in Section 6 had commenced and the north easterly part of the site had been stripped of topsoil. Some broken land drains are visible in some of the cut faces. A large mound of spoil is present on the southern part of the site, comprising materials won from the cut area.

Historical maps obtained for a previous desk study (reference 8) indicate that the site has been open fields since the Ordnance Survey First Edition map of 1879. A sewerage tank and bed, which are currently present approximately in the middle of the site, are first indicated on a map dated 1967.

Landfill areas have been identified by the desk study (reference 8) at the northern end of the site. The waste material is likely to comprise excavated natural materials from the construction of the A55.

3.2 Proposed Designs

Development proposals to date have divided the site into two development platforms: Plateau A to the east and Plateau B to the west (see appended drawing 20082593/sm/01). Design development by Atkins to date has concentrated on the Phase 1 area (northern end) of Plateau A. The Phase 1 area is shown on the appended drawing 5078488/PL/007.

Phase 1 is divided in to areas of proposed cut ("Cut Area 1" - "Cut area 4") and fill ("Fill Area 1").

There have been various revisions of the proposed cut and fill design. Current proposals indicate cut depths of up to around 6m below existing site levels.

4. Published Geology

The British Geological Survey (BGS) Map (Sheet 108 Flint 1:50,000, solid, 1972 and 1:63,360, drift, 1965) shows the site to be underlain by glacial drift which overlies Lower Carboniferous Holywell Shales. Glacial sand and gravel is shown adjacent to the site to the west. Approximately 50m to the west of the site, rocks of the Namurian Halkyn Formation outcrop, comprising Cefyn-y-fedw sandstone with chert beds. The more recent geological map (dated 1999) was reported by the desk study (reference 8) to show "made ground onto natural ground at the centre of the site".

The BGS 1:10,000 map SJ 36 SW (1986) (Figure 1) shows a geological fault running almost north- south through the site at the eastern end of the Warren Farm pond. The fault downthrows to the east. West of the fault, Holywell Shales are shown with bands of Gwespyr Sandstone. East of the fault, "md"" is shown, which is assumed to be notation for mudstone, however this is not confirmed on the map legend. Made ground and glacial sand and gravel are shown at the north eastern end of the site. A report from the construction of the Hawarden Bypass (dated 1975) suggests that the rockhead surface is irregular, with dips and hollows infilled with glacial materials.

5. Ground Conditions

The ground conditions at the Warren Hall site indicated by the available ground investigation are discussed below. In January 2010 additional trial pits and earthworks testing were undertaken in the Phase 1 Area associated with the earthworks contract. In the light of this information, a revised interpretation of the ground conditions at the site has been possible. The available ground investigation comprises:

- Stats Ltd (SL) July 1989,
- Exploration Associates (EA) April 1995 (for realignment of Lesters Lane and the redesign of A55/A5104 junction)
- Ian Farmers Associates (IFA) February 2008
- Atkins Ltd (AL) October 2009
- Jacobs Engineering (JE) January 2010

The locations of all of the investigation points are shown on the appended drawing no 20082593/sm/01.

5.1 Topsoil

Topsoil was encountered in all locations and was between 0.2m and 0.6m in thickness.

5.2 Made Ground & Infilled Hollows

Made ground was encountered in many of the boreholes and trial pits, and can be broadly divided into 3 areas:

- Northern end of site (A55 trunk road construction material)
- Central area up to eastern boundary (Infilled hollow)
- Isolated patches in south west and west (possible infilled ponds/kettle holes)

At the northern end of the site, and just beyond the site boundary (EA BH1-3, EA TP15&16, IFA BH10, IFA TP8, AL TP1-3, SL BH1, SL TP1, and TPF1/02) the made ground comprises reworked

glacial materials with organic matter, occasional pieces of wood, brick and coal. Where cohesive, the materials were described as soft and firm. The SL boreholes were logged as natural ground, but it is considered that the soft mixed strata in SL TP1 and organic inclusions in SL BH1 may be indicative of made ground. This made ground was encountered to between 0.97m and 2.6m bgl within the site and up to 4.55m bgl in the EA boreholes which are just to the north east of the site boundary. The EA report (reference 5) speculated that that these materials were associated with the construction of the A55 Trunk Road (1976 - 1984). The location of this material is consistent with the area of landfill identified by the desk study (reference 8).

Within the central area of the site, and eastwards up to the site boundary with Lesters Lane (IFA BH12, IFA WS7,10-13,15&16, IFA TP12, SL BH3, SL TP2) made ground was encountered to between 1.0m and in excess of 6.0m bgl. The made ground comprised reworked glacial materials with occasional brick, coal and ash fragments. The SL boreholes were logged as natural ground, but it is considered that the decaying vegetation in TP2 and organic inclusions, timber fragments and plant remains in BH3 may be indicative of made ground. Where cohesive, the materials were described as soft, firm and stiff. The IFA report (reference 9) notes that this area appears to be coincident with a valley type feature in the bedrock contours, which may imply historic excavation and backfilling, or the historic backfilling of a drainage feature.

Close to the southern boundary of the site, made ground was encountered in IFA TP3 and possibly in SL BH6 (logged as natural) comprising firm and stiff glacial clay with organic matter to 0.9m and 1.0m bgl. It is suspected that this may represent a small infilled pond, kettle hole or other small infilled hollow.

A similar feature is observed close to the western site boundary (SL BH4). Although this was logged as natural ground, it is considered that stiff, firm and very soft deposits with organic matter, peat and brown-black mottling may represent an infilled hollow. This material may be natural or made ground.

It is possible that some of the infilled hollows, particularly the features at the south and western boundaries of the site are natural glacial features. During the construction of the adjacent A55, it was observed that "Numerous periglacial kettle holes and subdued hollows on the surface of the till plain contained soft laminated clay, peat and inwash materials characterised by high moisture contents " (D. Nichol, 2001, reference 6).

5.3 Glacial Till

The glacial till was encountered directly below the topsoil or made ground.

The glacial materials encountered are highly variable and intermixed. Brown, red-brown and orange sand, silt, and clay, with varying proportions of gravel and cobbles are present across the site. Materials were described as varying from very soft to very stiff and loose to dense.

There appears to be no consistency between adjacent exploratory holes and it is therefore not possible to plot a coherent cross section. These mixed soil types may be a result of the glacial depositional environment or may be due to periglacial processes such as solifluction. Periglacial features such as kettle holes have been reported in the area (D Nichol, 2001, reference 6).

5.4 Bedrock

The depth to rockhead varies considerably across the site.

Bedrock was encountered at between 0.5m bgl (IFA BH5) and 14.2m bgl (IFA BH11) and was not encountered in all exploratory hole positions. In terms of ordnance datum, the shallowest proven rockhead is at 63.12m AOD (SL TP09) and the deepest proven is 27.68m AOD (IFA BH11).

Generally, rockhead is deepest in the north eastern corner of the site and shallowest at the south eastern boundary and western boundary adjacent to Warren Hall.

The bedrock is variable, comprising alternating sequences of sandstone, mudstone and siltstone, with breccia and 0.4m thickness of coal noted in one hole (IFA BH16). Lateral as well as vertical (stratigraphic) variation in bedrock type is likely.

5.5 Groundwater

During the ground investigation fieldworks, groundwater was noted in the majority of the exploratory holes. The Exploration Associates, Ian Farmer Associates and Atkins investigations were all carried out during the winter (January 1995, 2008 and 2010, respectively) and the Stats Ltd investigation was carried out in the summer (May-June 1989), however, even in the summer months significant groundwater was observed.

Groundwater was encountered:

- Associated with gravelly/ sandy/ silty horizons within the glacial till,
- As "running sand" horizons within the glacial till,
- At the interface of the bedrock and the glacial deposits,
- As seepages observed from joints/beds within bedrock,
- Within the bedrock, and
- Within made ground.

Groundwater was encountered at a wide variety of depths, from around 1.00m below ground level (bgl) to around 6.25m bgl, and small rises were usually recorded in boreholes over a 20 minute monitoring period following a water strike of between around 0.2m and 2.4m, indicating some artesian pressure.

Exploration Associates reported one monitoring visit in March 1995 where water levels of 6.38m bgl (35.55 mAOD) and 4.82m bgl (34.8 mAOD) were reported in BHs EA BH3 and EA BH4, respectively.

Limited groundwater monitoring data (2 no visits undertaken during February 2008) of pipes installed into the IFA boreholes showed standing water levels between 0.3m and 3.5m bgl. Some of the standpipes were recorded as "flooded".

Groundwater was also observed during Atkins' visits to the site as seepages from the cut faces in the glacial materials of the Phase 1 Area. Water was also observed flowing from the many land drains which had been disturbed during the cutting works. It is likely that the land drains collect surface water runoff and groundwater.

The currently proposed cut levels are below the monitored groundwater levels in many parts of the site.

5.6 Laboratory Testing

Geotechnical testing has been carried out by Exploration Associates, Ian Farmer Associates and Stats Ltd. comprising:

- Moisture content
- Plasticity Index
- Bulk Density
- Particle Size Distribution
- pH and sulphate

- CBR
- Dry density/ Moisture content relationship
- Undrained Shear Strength (Triaxial)
- One dimensional consolidation
- MCV
- Insitu CBRs

In early 2010, Atkins noted that the geotechnical laboratory testing which was undertaken following the various historical site investigations included very little testing required to carry out an earthworks assessment. Hence, in January 2010, a trial pit investigation within Phase 1 was undertaken prior to the 2010 Earthworks Contract (described in Section 6) to obtain samples for earthworks testing. Nine samples were submitted for testing, comprising:

 2.5kg Compaction tests with MCV at each of the moisture contents used (Earthworks Relationship Testing)

These samples, plus an additional five samples were also variously tested for:

- Natural moisture content
- Moisture content,
- Atterberg Limits,
- Particle size distribution,
- Shearbox
- MCV (1 point)

2010 Earthworks Contract: Phase 1 Area

6.1 Introduction

In August 2009 The Welsh Assembly Government appointed Alun Griffiths Ltd. as contractor for the Warren Bank Interchange improvement works. As this site is adjacent to the Warren Hall site, a subsequent order was raised for Alun Griffiths Ltd. in February 2010 to construct some initial earthworks at Phase 1 of the Warren Hall development. The weather during this period was particularly cold with snow and prolonged periods of freezing conditions.

6.2 Siteworks

During the earthworks contract, Cut Areas 1, 2 and 4 and Fill Area 1 (shown on drawing 5078488/PL/007) were stripped of topsoil and cutting commenced. During the cutting operation, groundwater was encountered above the final cut levels. Land drains were also encountered which fed water into the excavation, initially as a fast flow, reducing over time. Increased flow was observed from the land drains during wet weather. The problems with the groundwater resulted in the earthworks operation being abandoned.

Details of the encountered water levels in Cut Area 1 are shown in the appended drawing 20082593/sm/01. It should be noted that plant including dumper trucks had difficulty moving across the areas of cut and where topsoil had been stripped. A rock starter layer was installed in

Fill Area 1 to assist with plant movement. The thickness of the layer needed to support plant and machinery was determined by Alun Griffiths Ltd. by site trial.

Prior to the site works soil samples were taken from a number of trial pits within the areas of proposed cut. The samples underwent geotechnical laboratory testing as described in section 5.6. Following this a basic earthworks specification was prepared. The specification is further discussed in section 6.3 and is included within Appendix C. The trial pit logs are included in Appendix A. The locations of the trial pits are shown on the appended drawing 20082593/sm/01.

The material encountered in the trial pits was wet. MCV results (an indication of the moisture content) were all less than 8, the lower limit stated for Class 2 General Cohesive Fill in the earthworks specification. Shallow groundwater was also encountered within additional trial pits undertaken by the Contractor near the western site boundary (at the top of the existing slope) in Cut Area 2. However these trial pits were not witnessed by Atkins staff.

Wet material was encountered during the subsequent earthworks and the material excavated from the areas of cut was placed in a stockpile of unsuitable material, the location of which is shown on drawing 5078488/PL/007. No filling of site won material took place.

During a site visit by Atkins staff in April 2010 hand dug pits were excavated in cut areas up to around 0.6m in depth, at which point groundwater was encountered. This is deeper than was noted during the cutting operations. This suggests that there is a seasonal variation in groundwater level, which would be expected. The groundwater levels during the summer months are not known. Hand dug excavations were also made in the stockpile of unsuitable material to around 0.3m depth. The material appeared to have a dried "crust" and although no groundwater seepage was encountered, the material below 0.3m appeared to have a higher moisture content.

6.3 Earthworks Specification and Advance Testing

The basic earthworks Specification prepared for the Warren Hall Enabling Cut and Fill at Phase 1 comprises an Appendix 6/1 (Issue A) (including Table 6/1), Appendix 6/2 and Appendix 6/3 which are included in Appendix C of this report The specification is general accordance with the Highways Agency Specification for Highway Works. The specification was produced based upon earthworks relationship testing which was undertaken on samples recovered from trial pits dug in January 2010 prior to the earthworks contract. Four samples were recovered from Cut Area 1, six samples from Cut Area 2 and four samples from Fill Area 1. The testing is described in Section 5.6, and reproduced in Appendix B.

The samples were described as silty clayey sand, sandy clay, silty sand, sandy silt, gravelly sandy clay, very sandy gravel and very silty sand. Particle size distribution tests (8 no.), which included sedimentations by pipette method (7 no.) show the fines content of the material to range between 20 and 50%. The testing indicates that the majority of the fines comprises silt. Of the 7 no Atterberg limit tests, 3 no. samples were described as "non plastic" despite being described in the laboratory as "sandy clay". This, again, appears to be due to a high percentage of silt within the fines. The high silt content and well graded nature renders the material highly moisture susceptible and the behaviour of the material will change with small variations in the moisture content.

The classes of material included within the Specification are Class 1A, 1B and 1C General Granular Fill and Class 2A, 2B and 2C General Cohesive Fill. The acceptable limits for these materials are given within Table 6/1. The grading tests indicate that the material is most likely to classify as a class 2A fill providing that the moisture content of the material is acceptable. Acceptability limits of MCV for Class 2C material is given in the specification as between 8 and 12.

MCV tests results (9 no) were between0 and 7.6 with a mean average of 3.5.

To confirm that the material is acceptable for filling during the works the specification requires acceptability testing. However material that was likely to be acceptable was not encountered during the works due to the high moisture content and no filling of general fill was carried out prior to the cancellation of the earthworks contract. Therefore no acceptability testing was undertaken.

7. Future Site Enabling Works and Dewatering for Phase 1 Area

The site is affected by high groundwater levels and the ground conditions predominantly comprising variable, moisture susceptible glacial materials. The proposed construction must include provision to control the groundwater both in the temporary and permanent condition. It is also necessary to maximise the quantities of site won material that is suitable for re-use at the site. As the suitability of the material is dependent on the moisture content, the control of the groundwater and the suitability of site won material are therefore strongly linked.

In view of the difficulties with the high groundwater and ground conditions at this site it is considered that enabling works should be undertaken in advance of the main earthworks to trial and implement suitable measures to address the groundwater and ground conditions issues.

It is suggested that enabling works are undertaken initially within the Phase 1 area with the intention that once a suitable strategy is developed it could subsequently be implemented in other areas of the site.

7.1 Soils

To maximise the re-use of the materials at the site, the groundwater will need to be controlled. Dewatering is discussed further at Section 7.3 below.

Following dewatering, the soils may still have higher than acceptable moisture contents and additional measures may be required to maximise the suitability for re-use. It is recommended that the enabling works would include trials to determine suitable earthworks methods. These may include:

- Undertaking the earthworks during the summer months
- Spreading
- Stockpiling
- Lime modification

These are discussed in more detail below.

Earthworks at the site should be undertaken during the summer months when the moisture content of materials is lower and avoiding periods of heavy rainfall. An earthworks strategy should be developed to ensure management of surface water during the works and to prevent deterioration of the soil.

Soils could be spread prior to compaction to allow drying. Soils with a higher sand content will dry more quickly than those with a higher clay content. The amount of moisture content reduction will also be affected by the weather conditions, the length of time that the soils are left to dry and the layer thickness.

If an acceptable moisture content cannot be achieved by excavation and placement during dry weather, stockpiling involving double handling of the material may be required. Stockpiling of

unsuitable material was undertaken during the 2010 Earthworks Contract. It is recommended that this stockpile is sampled to determine the level of drainage which has occurred. During the site visit by Atkins staff on 19th March 2010 the crust of the stockpile appeared to have dried, however, on inspection using a spade to excavate a small pit, the material below approximately 300mm appeared to have a higher moisture content. Sampling of this stockpile is recommended to determine the moisture content profile through the stockpile to assess the level of drainage which has occurred.

A capillary break layer beneath the stockpile, possibly supplemented by additional layers of granular material within the fill would also aid drainage. If the existing stockpile contains material which has not drained to an acceptable moisture content, a site trial could be conducted incorporating granular layers within a stockpile.

As an alternative, lime modification could be used to reduce the moisture content prior to compaction. This would involve mixing of imported lime with the wet soils prior to compaction. Suitability testing of the materials would be necessary before site operations could commence. The lime is mixed with the material by rotavation and therefore modification is generally only suitable for materials with a maximum particle size around 75mm. Sieve tests (8 no) taken from the AL January 2010 trial pits show no material in excess of 75mm. Sieve tests from the EA 1995 investigation (13 no) show only one test with particles in excess of 75mm (4% of sample from TP16 at 2m depth, a sample of made ground from beyond the site boundaries to the north east). Examination of the exploratory hole records indicates cobbles sized fragments (>60mm) in made ground in 3 no positions at the northern and eastern end of the site. Cobbles and boulders (>200mm) are noted in 5 no. positions in the glacial materials in the central and eastern parts of the site. Further assessment of grading would be required if the feasibility of lime modification is to be considered.

7.2 Rock

The rockhead profile beneath the site appears to be highly variable and would probably be jagged in appearance beneath the glacial deposits, with both lateral and vertical variation in rock type. It is likely that the rock encountered in Phase 1 will be suitable for re-use if the filling takes place in dry conditions. If filling is undertaken in wet weather the mudstone and siltstone lithologies may breakdown during placement. It should be noted that any coal encountered will not be suitable for re-use. However, from the available borehole logs, coal was encountered in only IFA BH16 which is outside the Phase 1 area, in the southern part of the site and at depth (6.4m - 6.8m bgl).

7.3 Dewatering

The proposed cut platforms are likely to be below the current groundwater levels and therefore dewatering is required in the temporary and permanent case.

7.3.1 Temporary Dewatering

An assessment of a temporary sacrificial dewatering system should be undertaken to determine the number of stages of dewatering required, the peak and steady state flows and the spacing of the dewatering trenches. In previous correspondence between Atkins and the WAG, Atkins proposed to carry out calculations following the methods set out in CIRIA 515 Groundwater Control or the NAFAC Manual as appropriate. The calculations would provide flow and drawdown predictions in uniform ground conditions for a range of possible permeabilities. Atkins proposed to use the results to consider drainage solutions.

It is likely that the temporary drainage will comprise a series of filter drains running approximately north-south across the site. The spacing and depth of the drains would be determined by calculation. Water in these drains could then flow into east-west collection drains, to allow outfall.

Further modelling would be needed to assess the quantity and flow rates of water in order to evaluate the capacity and storage requirements of the drainage elements.

7.3.2 Permanent Drainage

An outline design for the requirements of a permanent drainage system should be undertaken following a similar method to that used for the temporary requirement. This work would estimate the flow rates in steady state conditions and estimate the number and depths of trenches required to achieve a drawdown below finished ground level.

A site investigation including pumping tests has not been undertaken on the site. In light of this our estimation of the dewatering requirement would rely on the limited existing ground investigation information and the information gathered during the recent earthworks contract. Therefore initial calculations would include broad assumptions and should be verified with a site trial.

Permanent drainage is likely to use similar methods to the temporary drainage system.

7.4 Estimation of Reuse of Materials

A table considering the possible suitability for re-use of the site won soils is given as Table 7.1, below. Suitability estimates are provided depending upon the earthworks and drainage strategy adopted. These percentages are very rough estimates and should be confirmed by the trials proposed as part of the enabling works.

Earthworks/Drainage Strategy	% Acceptability of Site Won Soils as Class 1 or 2 Fill
No drainage and works undertaken in winter	0
Drainage, works undertaken in summer avoiding periods of heavy rainfall, good earthworks practice, no additional measures	40
Drainage, works undertaken in summer avoiding periods of heavy rainfall, good earthworks practice, spreading and stockpiling	60
Drainage, works undertaken in summer avoiding periods of heavy rainfall, good earthworks practice, lime modification	80

Table 7.1: Suitability for re-use and Earthworks/Drainage Strategy

Notes

- 1. It is estimated that approximately 5 20% of the site won materials will comprise rock, although this should be confirmed by more detailed geological modelling. This material is not included within the figures given above.
- The percentages of rock and soil are based on the cut levels shown in drawings 1000_40000_contour.dwg, 500_40000_mcl4_xsect.dxf, 500_40000_mcl4_xsect_01.dxf, 500_40000_mcl4_xsect_02.dxf, 31/08/2010
- 3. These percentages are very rough estimates and should be confirmed by trails as proposed in this report.

8. Conclusions and Recommendations

The existing ground investigation information indicates that the ground conditions across the site are highly variable and moisture susceptible, and groundwater level is close to the surface. During the 2010 earthworks contract it was demonstrated that undertaking cut and fill operations during wet weather was not feasibile.

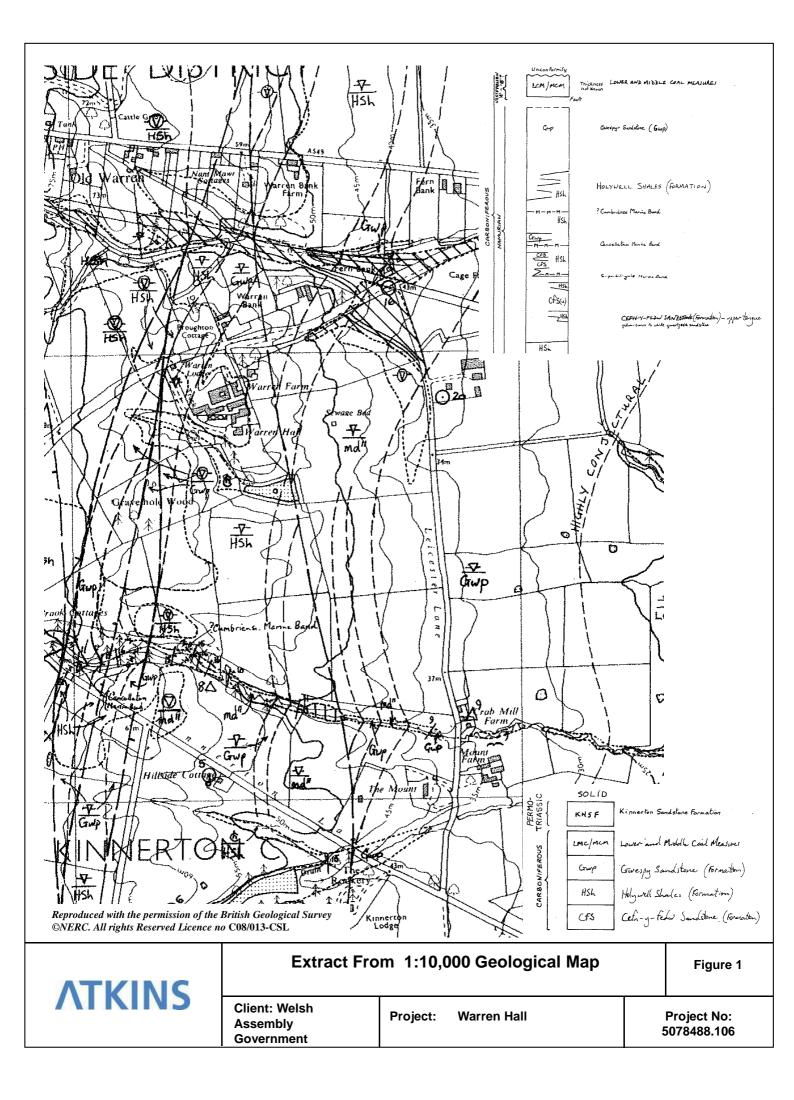
We have the following recommendations with regard to future cut and fill earthworks on the site:

- It is recommended that a temporary and permanent dewatering strategy is developed.
- Measures to maximise the suitability of site won fill materials should be considered and an earthworks strategy should be developed.
- Prior to any significant earthworks at the site enabling works should be carried out. The enabling works should comprise:
 - Trials and installation of a temporary drainage system to allow the future earthworks to be undertaken.
 - Trials to confirm the feasibility of the earthworks strategy. This may involve several of the measures stated at Section 7.1 above.

The enabling works should be undertaken in the Phase 1 area of the site initially, with the intention that an approach could subsequently be developed for the rest of the Warren Hall site.

Ko

Key	
+ SB01	Stats Ltd (1989)
+ ET03/EB01	Exploration Associates (1995)
+ BH01	lan Farmer Associates (2008)
▲ 2009/TP1	Atkins (2009)
■ TPC1/01	Jacobs Engineering (2010)
15.650	Level in m AOD at top of exploratory hole
× 46.482	Level of groundwater seepage encountered during 2009/2010 Earthworks contract
	Site Boundary
	Plateau A
	Plateau B
	Phase 1 Area
	Areas of landfill identified by Envirocheck Report (indicative only)
	Cut Areas
	Fill Area


<u> </u>				00.00.10				
D	Draft for comment			09.09.10		HJ		
itat	Purpose of Issue				ate I	Auth		
Rev	Description	Ву	Da	te	Chk'd	Auth		
A	tkins Limited					\bigcirc		
	adwick House chwood Park							
Warrington, Cheshire,			Tel: (01925) 238000					
England, WA3 6AE			Fax: (01925) 238500 www.atkinsglobal.com					
Clier	nt							
	LLYWODRAETH CYNULLI WELSH ASSEMBLY GOVI							

WARREN HALL

EXPLORATORY HOLE LOCATION PLAN

eet Size	2	Designed/Drawn SM	Checked CK	Author	rised HJ
40	U 1:2000 Date 09/09/10 Date 09/0		Date 09/09/10	Date 09/09/10	
atus	Drawing Number				Rev
F	200	82593/SM/3	32992		

Appendix A Additional Trial Pitting Records

Atkins Ltd 2009 Jacobs Engineering 2010

Trial Pit Record

Project:	A55 Warren Ban	ik Interchange	Trial Pit No:	TP 101
Proj. No.			Ground Level:	
Client:	NWTRA			
Hand	Vane Tests	Strata		
Depth (m)	Results (kN/m ²)	Description		Depth to base (m
	(,		e and medium sand with rootlets	
		(TOPSOIL)		0.30
		MADE GROUND: Orange-brown silty fine and medium sand with some sub-angular to rounded fine to coarse gravel of sandstone, siltstone.		0.00
		(irregular base, locally to (0.60
0.60	90, 110, 120	MADE GROUND: Stiff brown occasionally mottled grey very sandy (fine and medium) silty Clay with some angular to rounded fine to coarse gravel of sandstone, siltstone, brick fragments and		
1.00	95, 100, 110	occasional sub-angular to rounded cobbles of sandstone, siltstone.		
		(irregular base, locally to		1.50
		(fine) silty CLAY with som	occasionally mottled grey slightly sandy e sub-angular to rounded fine to le, siltstone, mudstone, coal.	
		At 1.80m rounded cobble	At 1.80m rounded cobble of siltstone	
		Trial pit complete at 2.50n	n depth	
Excavation		Groundwater		
Easy excavatability to 2m, moderately easy below.		None encountered.		
Pit sides sta	ble.			
Remarks		I		
CAT scan u		xcavation commenced to c n excavated spoil below 1.2	heck no services present. 2m depth; hindered by relatively small 'lu	mp size' and gravel

Pit dimensions 0.9m x 2.5m

Logged by M Woolrich

Trial Pit Record

	ASS Wallell Dal	k Interchange	Trial Pit No:	TP 102	
Proj. No.			Ground Level:		
Client:	NWTRA				
Hand	Vane Tests	Strata			
Depth (m)	Results (kN/m ²)	Description		Depth to base (m	
		Grass over dark brown silty fin (TOPSOIL)	e and medium sand with rootlets	0.30	
			wn and dark brown slightly clayey d with some sub-angular to sub- of sandstone, siltstone.		
		Below 0.7m locally clayey		1.20	
1.20	55, 60, 65	greyish-brown very (fine and n	fine and medium SAND and firm nedium) sandy CLAY. A little sub- rse gravel of sandstone, siltstone	4.00	
		rounded fine to coarse gravel	CLAY with some sub-angular to of sandstone, siltstone, mudstone. .5m x 0.6m) of brown clayey fine ade Ground).	1.60 2.50	
2.50	65, 68, 70	grey slightly sandy (fine) silty (sh-brown, occasionally mottled CLAY with some sub-angular to of sandstone, siltstone, mudstone.		
3.00	80, 88, 90			3.20	
		Trial pit complete at 3.2m dept	ίh		
Excavation Easy excav		Groundwater	at 2 cm donth whore cond satis	t locally decrease	
Pit sides sta	·	Damp at 2.2m depth. Seepage	e at 2.6m depth where sand pocke	l locally deepens.	
Remarks					
CAT scan u			hindered by relatively small 'lump		
gravel conte probably un	ent.Tests undertake der-estimates. ons 0.9m x 2.5m	n on excavated spoil 'disturbed	d clay lumps' at 1.2m, 2.5m and 3n	n, consequently	

Trial Pit Record

	A55 warren Bar	nk Interchange	Trial Pit No:	TP 103	
Proj. No.			Ground Level:		
Client:	NWTRA				
Hand	Vane Tests	Strata			
Depth (m) Results (kN/m ²)		Description		Depth to base (m	
		Grass over dark brown silty fine and medium sand with rootlets (TOPSOIL)			
		MADE GROUND: Grey cl much angular to sub-rour occasional cobbles of sar	ayey silty fine and medium Sand with ided fine to coarse gravel, and idstone, siltstone. Angular, blocky boulders ('Old stone drain') in one end	0.30	
		MADE GROUND: Orange with some angular to sub sandstone, siltstone. Loca	e-brown clayey fine to coarse Sand -rounded fine to medium gravel of ally intermixed with light brown silty	0.70	
		sand.		1.10	
			layey fine and medium Sand with some m x 0.5m) of firm brown and grey very clay.		
		with a little sub-angular to of siltstone, mudstone and	D: Firm dark grey slightly sandy Clay subrounded fine and medium gravel d some rootlets, organic material. th firm brown sandy (fine and medium)	1.70	
		clay.	In finite and medianty	2.10	
		-	wn slightly sandy (fine) silty CLAY with ided fine to coarse gravel of Istone.		
		Trial pit complete at 2.60r	n depth	2.60	
Excavation Groundwater			I		
Easy excavatability. Pit sides stable.		None encountered.			
Domorteo					
Remarks			check no services present.		

content. Pit dimensions 0.9m x 3.3m (pit extended away from 'stone drain' encountered at 0.3m depth).

Logged by M Woolrich

Tel 01978 358895 Fax 01978 310240

.

Trial Pit Logging Sheet

Site: ASS WARREN BANK.

Pit Number: TP ciloi

Client ALUN GRIFFITHS. Date 26/1/10 Operators JE

Depth (m)	Thickness (m)	Material Description	Samples
0-0.18		Topsoil with graves over	
0.18 1.0	· ·	Orange brown brown Slighty gravely Silly SAND	TPCI101 SI
1.0-1.4		Recheste brown brown citty Clayer SA occ lumps grey & brown Clay.	
		water and encontored @ 10m. (moaevale flow)	
		•	
	, ,		

Tel 01978 358895 Fax 01978 310240

Trial Pit Logging Sheet

Site: ASS WARREN BANK.

Pit Number: TPC4/02

Client ALUN GRIFFITHS. Date 27/11/10 Operators JE

Depth (m)	Thickness (m)	Material Description	Samples
		Topsoll stripped approx 0-20m	
0-1.0		Light brown lovancje brown Slightly gr	welly
		Sanay CLAY - becoming reducty brown	TPCI/02
		in colour after 0.4m.	<u> </u>
1.0-2.7		Redich prom Slightly growelles silly SAND becoming wetter with depth.	82. (1-1.5m)
end.		SAND becoming wetter with depth.	
		Land arain @ 1.0 m. water enterig	53. (1:5-2.7m
		at Varions points from 1.0m down.	
		(ranning lands).	

Tel 01978 358895 Fax 01978 310240

Trial Pit Logging Sheet

Site: ASS WARREN BANK.

Pit Number: TPF1/01

Client ALUN GRIFFITHS. Date 27/1/10 Operators JE

Depth (m)	Thickness (m)	Material Description	Samples
0-0.24		Topsoil with grouss over	
0-24-1.50		Brown overge brown Light grey Slighty gravely Very Silty SAND	TPF1 (01 31.
ena.		gravery ray stay	
		land drain encountered @ 1.20m.	
		د .	
		•	
,			

trialpitlog. 09/10/2007

Tel 01978 358895 Fax 01978 310240

Trial Pit Logging Sheet

· •

Site: ASS WARREN BANK.

Pit Number: TPFI/OZ

Client ALUN GRIFFITHS Date 27/1/10 Operators JE

Depth (m)	Thickness (m)	Material Description	Samples
00.2		Topsont with grows over:	
0.2-0.55	· · · · · · · · · · · · · · · · · · ·	Brom Jorange brown Some light grey Snightly gravelley Sandy CLAY.	
0.85 - 1.9.		Mo. Firm redish brown brown with some tight to dark grey Slighty gravelles Sanay CLAY - oce briess fragment	
		Shear vane @ 0.7m. 50,55,56 kpa	
1-91.		ROCK HEAD - Weatherd SILTSTONE	
		No Samples taken. No water encountered.	
,			

trialpitlog. 09/10/2007

• • • • • •

-

•

Tel 01978 358895 Fax 01978 310240

Trial Pit Logging Sheet

:

Site: ASS WARREN BANK.

ł

Pit Number: TPF1/04

Client ALUN GRIFFITHS. Date 27. 11/10 Operators JE

Samples	Material Description	Thickness (m)	Depth (m)
	Topsen with grass over		0-0.28
	light prom lovange brown slight gravel		0-28 - 0-5.
	silly SAND.	,	
und TREIJacq	Firm Real occ stiff Lumps realish brow		0.5 - 2.0
My SI.	brown lovenge brown Slighty gravely Sligh		
	Senary CLAY occ coal fragments. Decomes weller with depth.		
	<u>ح</u>		
	Alo un las autored		
		7	
	becomes weller with depter. Shear vare: 1.0m 90, 70,100 . 1.35m 40,38,58.		

Tel 01978 358895 Fax 01978 310240

Trial Pit Logging Sheet

.

Site: ASS WARREN BANK.

Pit Number: TPC2/01

Client ALUN GRIFFITHS. Date 27/1/10 Operators JE

Depth (m)	Thickness (m)	Material Description	Samples
0-0.2		Topsoil with grass over	
0.2-1.4m		Firm redish brown / brown Slighty growelly Sanay/Very Sandy CLAY	TPC2101. SI
1.4 m	· · · · · · · · · · · · · · · · · · ·	Rock HEAD - SANDSTONE.	Sz* ·
		Slight water Scorpage @ 1.4m on top of rock.	of stone for identification if reald.
		\$ 	
·			

Trial Pit Logging Sheet

Site: ASS WARREN BANK.

Pit Number: TPC2 02.

Client ALUN GRIFFITHS. Date 271.110 Operators JE

Depth (m)	Thickness (m)	Material Description	Samples
0-0.21		Topsoil with grouss over.	. / P atimum.
0.21 - 2.3	· .	Brown redusts brown very Clayery SAN Sandy CLAY	79C2/07 3D/ SI
2.3-3-1 end.		Brown slighty gravely silly sonos/. Sandy SILT	\$2
		د	
		No water	
,			

trialpitlog. 09/10/2007

Tel 01978 358895 Fax 01978 310240

Tel 01978 358895 Fax 01978 310240

Trial Pit Logging Sheet

Site: ASS WARREN BANK.

Pit Number: 7PC2 03

Client ALUN GRIFFITHS. Date 27/1/10 Operators JE

Depth (m)	Thickness (m)	Material Description	Samples
0-0.21		Topsoil with grass over .	
n 01 - 012			
0.21 - 2.3		Redish brown brown Patches of grey	<u>TPC2/03</u> SI
		Redish brown brown Patches of grey Very Clargery SAND / Ver Sandy CLAY	SI
ënd.			
			· · · · · · · · · · · · · · · · · · ·
		water @ 1.65m	
		*	
		•	

Tel 01978 358895 Fax 01978 310240

Trial Pit Logging Sheet

,

Site: ASS WARREN BANK.

Pit Number: TPC2/04.

Client ALUN GRIFFITHS. Date 11/10 Operators JE

Depth (m)	Thickness (m)	Material Description	Samples
0-0-2		Topsoil with grass over :	
		0	
0-2 - 2.3		Firm Pedish brown brown Slighty grave	ly TPEZION
		Slighty Sandy Carty - becomes more	
		gravels affer 1.6 m.	
		Shear vare @ apr 1.0m 50,42,46xpa	
2.3-3.		Brown silly Clayer Vierry Sandy GRAVEL	\$2,
ena.	•		
		water encountered a 1.6m. Sight flo	w~
		2	
		•	
<u></u>	1		

Tel 01978 358895 Fax 01978 310240

Trial Pit Logging Sheet

site: ASS WARREN BANK.

Pit Number: TPF1 03

Client ALUN GRIFFITHS. Date 27/1/10 Operators JE

Depth (m)	Thickness (m)	Material Description	Samples
0.0-0.2		Topsail with greves over	
0.2-0.4		Light grey/ brow Silly SAND	
0.4-1.8		Firm reduch brown brown avange brown Singhty gravelly Slighty Sandy CLA	7PF1103 1
		Shear Voue @ 1.5m 50,45,50	
1.8 - 2.1 end.		Brown Slighty growley Silly SANSD	\$2.
		•	
	8		

Appendix B Geotechnical laboratory Testing

Earthworks Suitability Testing 2010

GTG0082593/5078488.106/geotechnical overview report v8.docx

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE Date: 4th February 2010 Test Report Ref.: STR 207358

Page 1 of 1

Contract: A55 Warrens Bank

LABORATORY TEST REPORT

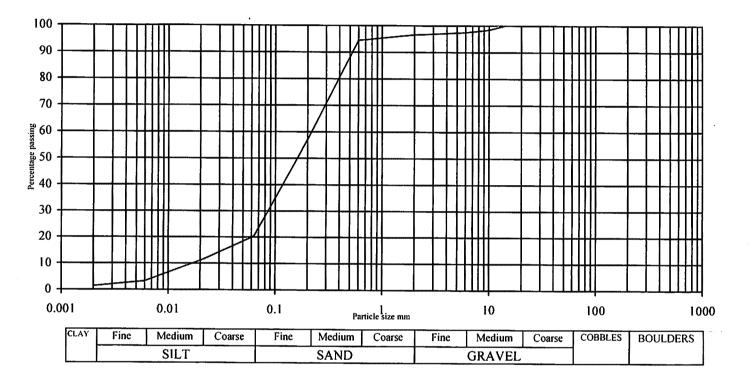
TEST REQUIREMENTS:	To determine the Particle Size Distribution (PSD) sedimentation by
	pipette method to BS 1377: Part 2: 1990: clause 9.4.

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling:

Sampled By: Soil Description: Were any unrepresentative lumps present? No S30235 TPC1/01-S2 1.0-1.4 Unknown 01/02/2010 03/02/2010 Unknown Unknown BS 812: Pt. 102/BS EN 932-1/Unknown (Delete as appropriate) Client Silty Clayey Sand No

COMMENTS/DEPARTURE FROM SPECIFIED PROCEDURE:


RESULTS:

SEE ATTACHED

PARTICLE			
SI	SIZE		
(mm)	% pass		
200	100		
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	98.5		
6.3	97.6		
5	97.3		
2	96.6		
0.6	94.5		
0.212	59.0		
0.063	20.4		
0.0212	11.5		
0.006	3.3		
0.002	1.4		

Preparation :	No	pre-
treatement	use	ed

PARTICLE		
PROPORTIONS		
Cobbles % 0		
Gravel % 3.4		
Sand % 76.2		
Silt % 19.0		
Clay % 1.4		

G.LI Evans - Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE

Contract.: A55 Warrens Bank

Date: 5th February 2010 Test Report Ref.: STR 207360

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Moisture Condition Value (MCV) of a sample at its natural moisture content in accordance with BS 1377 : Part 4 : 1990 Test 5.4

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S30235 TPC1/01-S2 1.00-1.40 Unknown 01/02/2010 02/02/2010 Unknown Unknown Disturbed Bulk Sample Client Silty Clayey Sand N/A

RESULTS:

Interpretation of test results: Directly from graph

Moisture Condition Value (MCV)	= 1.8
Moisture Content (%)	= 16.9

% Particles >20mm removed prior to initial sample = 0

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE:

For material requiring more than 256 blows the Moisture Condition Value should be reported as "more than 18".

() E. R. Goulden Technical Manager Approved Signatories () E. N. Jones Soils Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Date: 4th February 2010 Test Report Ref.: 207361

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE Contract: A55 Warrens Bank

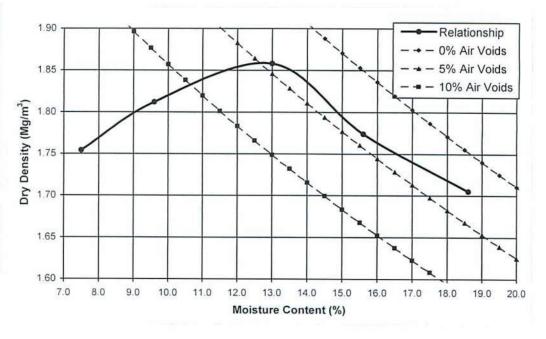
Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Dry Density and Moisture Content Relationship of soil passing 20mm sieve 2.5kg Rammer Method in accordance with BS 1377: 4: 1990 Clause 3.3

SAMPLE DETAILS:

Certificate of sampling recei	ived No	Laboratory Ref. No:	S30235
Client Ref. No:	TPC1/01-S2 1.00-1.40	Date and Time of Sampling	g Unknown
Date of Receipt at Lab:	01/02/2010	Date of Start of Test:	03/02/2010
Sampling Location:	Unknown	Name of Source:	Unknown
Method of Sampling:	Unknown	Sampled By:	Client
Soil Description:	Silty Clayey Sand	Type of Sample:	Silty Clayey Sand


RESULTS: Were any unrepresentative lumps present? No

Sample Preparation Procedure:	3.2.4.1		
Sample Preparation Method:	Single		
Particle Density:	2.60	Mg/m ³	(Assumed)
Amount of sample retained on 37,5mm te	est siev 0%		

Amount of sample retained on 20mm test sieve: 0%

Moisture	Dry Density
Content (%)	Mg/m ³
7.5	1.75
9.6	1.81
13.0	1.86
15.6	1.77
18.6	1.71

Optimum	Maximum
Moisture	Dry Density
Content (%)	Mg/m ³
13	1.86

Comments/Departure from specified procedures:

() E. R. Goulden Technical Manager Approved Signatories () E. N. Jones Soils Laboratory Manager

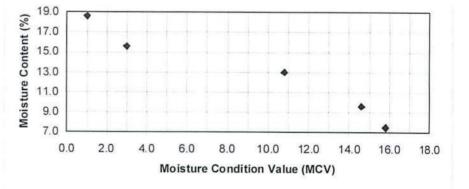
Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE Date: 5th February 2010 Test Report Ref.: 207362

Page 1

Contract:: A55 Warrens Bank

LABORATORY TEST REPORT


TEST REQUIREMENTS: To determine the Moisture Condition Value (MCV) moisture content relation of a soil in accordance with BS 1377: Part 4: 1990 Test 5.5

SAMPLE DETAILS:

Certificate of Sampling Received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Were any unrepresentative lumps present? <u>RESULTS:</u> No S30235 TPC1/01-S2 1.00-1.40 Unknown 01/02/2010 03/02/2010 Unknown Unknown Disturbed Bulk Sample Client Silty Clayey Sand No

Gravel Content >20mm = 0%

Moisture Content (%)	Moisture Condition Value (MCV)
7.5	15.8
9.6	14.6
13.0	10.8
15.6	3.0
18.6	1.0

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE:

() E. R. Goulden Technical Manager Approved Signatories

Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE

Contract.: A55 Warrens Bank

Date: 5th February 2010 Test Report Ref.: STR 207364

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Moisture Content of Soils - DEFINITIVE OVEN -DRYING METHOD. In accordance with BS 1377 : Part 2 : 1990 : clause 3.2

SAMPLE DETAILS:

Certificate of Sampling Received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Were any unrepresentative lumps present? No S30235 TPC1/02-S1 0.00-1.00 Unknown 01/02/2010 02/02/2010 Unknown Unknown Disturbed Bulk Sample Client Sandy Clay No

RESULTS:

Moisture Content (%) = 20.9

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE:

None

() E. R. Goulden Technical Manager Approved Signatories () E. N. Jones Soils Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE

Contract.: A55 Warren Bank

Date: 4th February 2010 Test Report Ref.: STR 207365

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Plastic Limit, Liquid Limit, and Plasticity Index of sample in accordance with BS 1377:Part 2:1990 Clause 5.3, Clause 4.3, and Clause 5.4.

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S30235 TPC1/02/S1 0.00-1.00 Unknown 01/02/2010 01/02/2010 Unknown Unknown Disturbed Bulk Sample Client Sandy Clay N/A

RESULTS:

History of sample: % Materials passing 425µm = Plastic Limit = Liquid Limit = Plasticity Index =

Natural state/After wet sieving 96.3 Non Plastic 22 N/A

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE:

() E. R. Goulden Technical Manager Approved Signatories () E. N. Jones Soils Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE

Contract.: A55 Warrens Bank

Date: 5th February 2010 Test Report Ref.: STR 207366

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Moisture Condition Value (MCV) of a sample at its natural moisture content in accordance with BS 1377 : Part 4 : 1990 Test 5.4

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S30235 TPC1/02-S1 0.00-1.00 Unknown 01/02/2010 02/02/2010 Unknown Unknown Disturbed Bulk Sample Client Sandy Clay N/A

RESULTS:

Interpretation of test results: Directly from graph

Moisture Condition Value (MCV)	= 6.5
Moisture Content (%)	= 20.9

% Particles >20mm removed prior to initial sample = 0

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE:

For material requiring more than 256 blows the Moisture Condition Value should be reported as "more than 18".

() E. R. Goulden Technical Manager Approved Signatories () E. N. Jones Soils Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Date: 4th February 2010 Test Report Ref.: 207367

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Dry Density and Moisture Content Relationship of soil passing 20mm sieve 2.5kg Rammer Method in accordance with BS 1377: 4: 1990 Clause 3.3

SAMPLE DETAILS:

Contract: A55 Warrens Bank

Atkins,

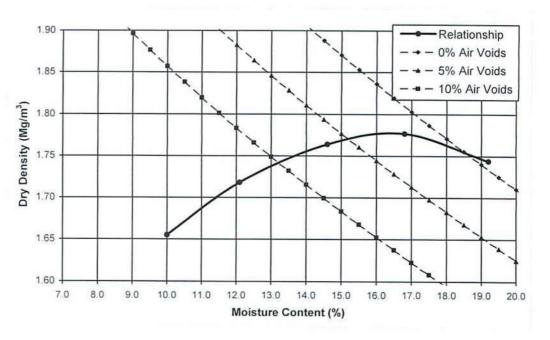
Risley, Warrington.

WA3 6AE

Chadwick House,

Birchwood Park,

Certificate of sampling recei	ved No	Laboratory Ref. No:	S30235
Client Ref. No:	TPC1/02-S1 0.00-1.00	Date and Time of Samplin	ng Unknown
Date of Receipt at Lab:	01/02/2010	Date of Start of Test:	03/02/2010
Sampling Location:	Unknown	Name of Source:	Unknown
Method of Sampling:	Unknown	Sampled By:	Client
Soil Description:	Sandy Clay	Type of Sample:	Sandy Clay


RESULTS: Were any unrepresentative lumps present? No

Sample Preparation Procedure:	3.2.4.1		
Sample Preparation Method:	Single		
Particle Density:	2.60	Mg/m ³	(Assumed)
Amount of sample retained on 37.5mm tes	st siev 0%		

Amount of sample retained on 20mm test sieve: 0%

Moisture	Dry Density
Content (%)	Mg/m ³
10.0	1.66
12.1	1.72
14.6	1.76
16.8	1.78
19.2	1.74

Optimum	Maximum
Moisture	Dry Density
Content (%)	Mg/m ³
17	1.78

Comments/Departure from specified procedures:

() E. R. Goulden Technical Manager Approved Signatories () E. N. Jones Soils Laboratory Manager

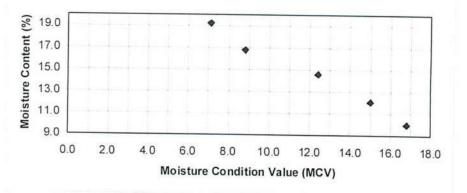
Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE Date: 5th February 2010 Test Report Ref.: 207368

Page 1

Contract:: A55 Warrens Bank

LABORATORY TEST REPORT


TEST REQUIREMENTS: To determine the Moisture Condition Value (MCV) moisture content relation of a soil in accordance with BS 1377: Part 4: 1990 Test 5.5

SAMPLE DETAILS:

Certificate of Sampling Received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Were any unrepresentative lumps present? <u>RESULTS:</u> No S30235 TPC1/02-S1 0.00-1.00 Unknown 01/02/2010 03/02/2010 Unknown Unknown Disturbed Bulk Sample Client Sandy Clay No

Gravel Content >20mm = 0%

Moisture Content (%)	Moisture Condition Value (MCV)
10.0	16.8
12.1	15.0
14.6	12.4
16.8	8.8
19.2	7.1

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE:

() E. R. Goulden Technical Manager Approved Signatories

() E. N. Jones Soils Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE Date: 4th February 2010 Test Report Ref.: STR 207369

Page 1 of 1

Contract: A55 Warrens Bank

LABORATORY TEST REPORT

TEST REQUIREMENTS:

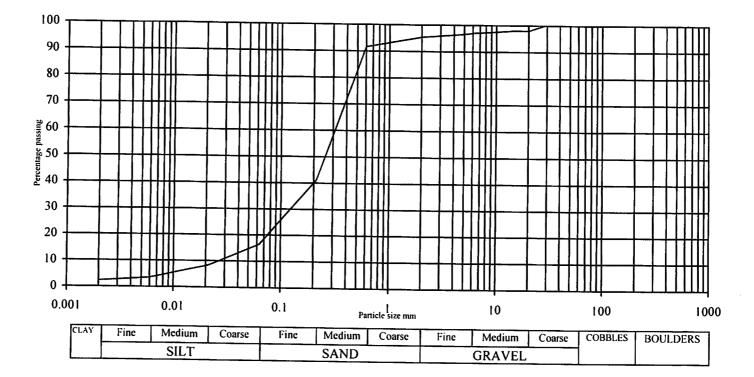
To determine the Particle Size Distribution (PSD) sedimentation by pipette method to **BS 1377: Part 2: 1990: clause 9.4.**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling:

Sampled By: Soil Description: Were any unrepresentative lumps present? No S30235 TPC1/02-S2 1.00-1.50 Unknown 01/02/2010 03/02/2010 Unknown Unknown BS-812: Pt. 102/BS EN 932-1/Unknown (Delete as appropriate) Client Silty Sand No

COMMENTS/DEPARTURE FROM SPECIFIED PROCEDURE:


RESULTS:

SEE ATTACHED

PAR1	TICLE
and the second se	ZE
(mm)	% pass
200	100
125	100
90	100
75	100
63	100
50	100
37.5	100
28	100
20	98
14	98
10	97.6
6.3	97.1
5	96.6
2	95.4
0.6	91.6
0.212	41.2
0.063	16.5
0.0212	8.4
0.006	3.5
0.002	2.3

Preparation	:	No	pre-
treatemer	It	use	d

PARTICLE	
PROPORTIONS	
Cobbles %	0
Gravel %	4.6
Sand %	78.9
Silt %	14.2
Clay %	2.3

CLEVANS - Laboratory Manager

. .

TEST REPORT Ref. STR - 207369 - Page 2 of 2

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE

Contract.: A55 Warrens Bank

Date: 5th February 2010 Test Report Ref.: STR 207370

Page 1 of 1

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS:</u> To determine the Moisture Condition Value (MCV) of a sample at its natural moisture content in accordance with BS 1377 : Part 4 : 1990 Test 5.4

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S30235 TPC1/02-S2 1.00-1.50 Unknown 01/02/2010 02/02/2010 Unknown Unknown Disturbed Bulk Sample Client Silty Sand N/A

RESULTS:

Interpretation of test results: Directly from graph

Moisture Condition Value (MCV)	= 2.4
Moisture Content (%)	= 17.0

% Particles >20mm removed prior to initial sample = 2

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE:

For material requiring more than 256 blows the Moisture Condition Value should be reported as "more than 18".

() E. R. Goulden Technical Manager Approved Signatories

Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Date: 4th February 2010 Test Report Ref.: 207371

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Dry Density and Moisture Content Relationship of soil passing 20mm sieve 2.5kg Rammer Method in accordance with BS 1377: 4: 1990 Clause 3.3

SAMPLE DETAILS:

Contract: A55 Warrens Bank

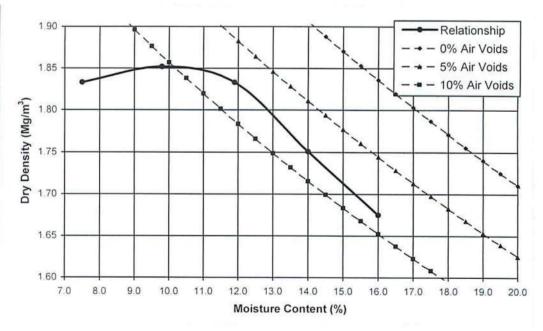
Atkins.

Risley.

Warrington. WA3 6AE

Chadwick House, Birchwood Park,

Certificate of sampling rece	ived No	Laboratory Ref. No:	S30235
Client Ref. No:	TPC1/02-S2 1.00-1.50	Date and Time of Sampl	ing Unknown
Date of Receipt at Lab:	01/02/2010	Date of Start of Test:	03/02/2010
Sampling Location:	Unknown	Name of Source:	Unknown
Method of Sampling:	Unknown	Sampled By:	Client
Soil Description:	Silty Sand	Type of Sample:	Silty Sand


RESULTS: Were any unrepresentative lumps present? No

Sample Preparation Procedure:	3.2.4.2		
Sample Preparation Method:	Single		
Particle Density:	2.60	Mg/m ³	(Assumed)
Amount of sample retained on 37.5mm test s	siev 0%		

Amount of sample retained on 20mm test sieve: 2%

Moisture	Dry Density
Content (%)	Mg/m ³
7.5	1.83
9.8	1.85
11.9	1.83
14.0	1.75
16.0	1.68

Optimum	Maximum
Moisture	Dry Density
Content (%)	Mg/m ³
9.8	1.85

Comments/Departure from specified procedures:

() E. R. Goulden Technical Manager Approved Signatories () E. N. Jones Soils Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

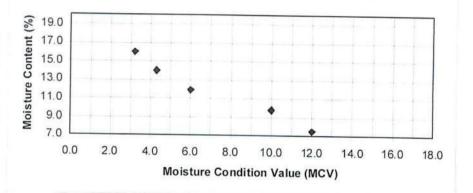
Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE Date: 5th February 2010 Test Report Ref.: 207372

Page 1

Contract:: A55 Warrens Bank

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Moisture Condition Value (MCV) moisture content relation of a soil in accordance with BS 1377: Part 4: 1990 Test 5.5


SAMPLE DETAILS:

Certificate of Sampling Received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Were any unrepresentative lumps present? <u>RESULTS:</u>

No S30235 TPC1/02-S2 1.00-1.50 Unknown 01/02/2010 03/02/2010 Unknown Unknown Disturbed Bulk Sample Client Silty Sand No

Gravel Content >20mm = 2%

Moisture Content (%)	Moisture Condition Value (MCV)
7.5	12.0
9.8	10.0
11.9	6.0
14.0	4.3
16.0	3.2

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE:

() E. R. Goulden Technical Manager Approved Signatories

Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE

Contract.: A55 Warren Bank

Date: 4th February 2010 Test Report Ref.: STR 207374

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the Plastic Limit, Liquid Limit, and Plasticity Index of sample in accordance with BS 1377:Part 2:1990 Clause 5.3, Clause 4.3, and Clause 5.4.

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S30235 TPC2/01/S1 0.20-1.40 Unknown 01/02/2010 01/02/2010 Unknown Unknown Disturbed Bulk Sample Client Sandy Clay N/A

RESULTS:

History of sample:Natural state/After wet sieving% Materials passing 425μm=92.8Plastic Limit=14Liquid Limit=22Plasticity Index=8

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE:

() E. R. Goulden Technical Manager Approved Signatories () E. N. Jones Soils Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE

Contract.: A55 Warrens Bank

Date: 5th February 2010 Test Report Ref.: STR 207375

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Moisture Content of Soils - DEFINITIVE OVEN -DRYING METHOD. In accordance with BS 1377 : Part 2 : 1990 : clause 3.2

SAMPLE DETAILS:

Certificate of Sampling Received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Were any unrepresentative lumps present? No S30235 TPC2/01-S1 0.20-1.40 Unknown 01/02/2010 02/02/2010 Unknown Unknown Disturbed Bulk Sample Client Sandy Clay No

RESULTS:

Moisture Content (%) = 15.1

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE:

None

() E. R. Goulden Technical Manager Approved Signatories

Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE

Contract.: A55 Warrens Bank

Date: 5th February 2010 Test Report Ref.: STR 207376

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Moisture Content of Soils - DEFINITIVE OVEN -DRYING METHOD. In accordance with BS 1377 : Part 2 : 1990 : clause 3.2

SAMPLE DETAILS:

Certificate of Sampling Received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Were any unrepresentative lumps present? No S30235 TPC2/02-S1 0.21-2.30 Unknown 01/02/2010 02/02/2010 Unknown Unknown Disturbed Bulk Sample Client Sandy Clay No

RESULTS:

Moisture Content (%) = 16.5

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE:

None

() E. R. Goulden Technical Manager Approved Signatories

Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE

Contract.: A55 Warren Bank

Date: 4th February 2010 Test Report Ref.: STR 207377

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Plastic Limit, Liquid Limit, and Plasticity Index of sample in accordance with BS 1377:Part 2:1990 Clause 5.3, Clause 4.3, and Clause 5.4.

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S30235 TPC2/02/S1 0.21-2.30 Unknown 01/02/2010 01/02/2010 Unknown Unknown Disturbed Bulk Sample Client Sandy Clay N/A

RESULTS:

History of sample:Natural state/After wet sieving% Materials passing 425μm=Plastic Limit=Liquid Limit=Plasticity Index=N/A

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE:

() E. R. Goulden Technical Manager Approved Signatories () E. N. Jones Soils Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE Date: 4th February 2010 Test Report Ref.: STR 207378

Page 1 of 1

Contract: A55 Warrens Bank

LABORATORY TEST REPORT

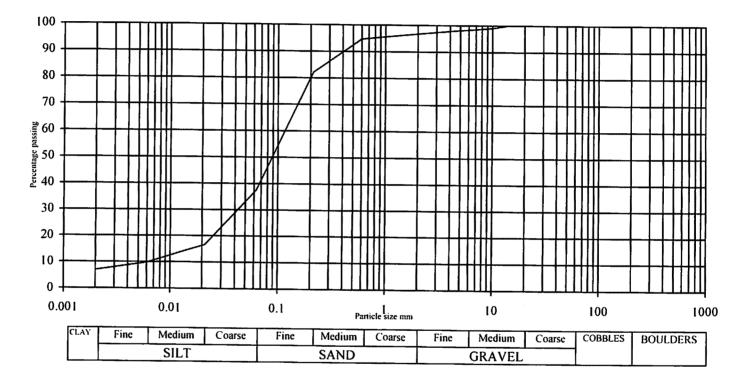
TEST REQUIREMENTS:	To determine the Particle Size Distribution (PSD) sedimentation by
	pipette method to BS 1377: Part 2: 1990: clause 9.4.

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling:

Sampled By: Soil Description: Were any unrepresentative lumps present? No S30235 TPC2/02-S1 0.21-2.30 Unknown 01/02/2010 03/02/2010 Unknown Unknown BS 812: Pt. 102/BS EN 932-1/Unknown (Delete as appropriate) Client Sandy Clay No

COMMENTS/DEPARTURE FROM SPECIFIED PROCEDURE:


RESULTS:

SEE ATTACHED

PART	ICLE
SI	ZE
(mm)	% pass
200	100
125	100
90	100
75	100
63	100
50	100
37.5	100
28	100
20	100
14	100
10	99.1
6.3	98.4
5	98.2
2	96.8
0.6	94.7
0.212	82.1
0.063	37.6
0.0212	16.6
0.006	9.8
0.002	6.9

Preparation	:	No	pre-	
treatemer	It	use	ed	

PARTICLE	
PROPO	RTIONS
Cobbles %	0
Gravel %	3.2
Sand %	59.2
Silt %	30.7
Clay %	6.9

Laboratory Manager

TEST REPORT Ref. STR - 207378 - Page 2 of 2

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE

Contract.: A55 Warrens Bank

Date: 5th February 2010 Test Report Ref.: STR 207379

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS:	To determine the Moisture Condition Value (MCV) of a sample at its
	natural moisture content in accordance with BS 1377 : Part 4 : 1990
	Test 5.4
Ourse - Deerver	

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S30235 TPC2/02-S1 0.21-2.30 Unknown 01/02/2010 02/02/2010 Unknown Unknown Disturbed Bulk Sample Client Sandy Clay N/A

RESULTS:

Interpretation of test results: Directly from graph

Moisture Condition Value (MCV)	= 4.0
Moisture Content (%)	= 16.5

% Particles >20mm removed prior to initial sample = 0

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE:

For material requiring more than 256 blows the Moisture Condition Value should be reported as "more than 18".

() E. R. Goulden Technical Manager Approved Signatories

Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Date: 4th February 2010 Test Report Ref.: 207380

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Dry Density and Moisture Content Relationship of soil passing 20mm sieve 2.5kg Rammer Method in accordance with BS 1377: 4: 1990 Clause 3.3

SAMPLE DETAILS:

Contract: A55 Warrens Bank

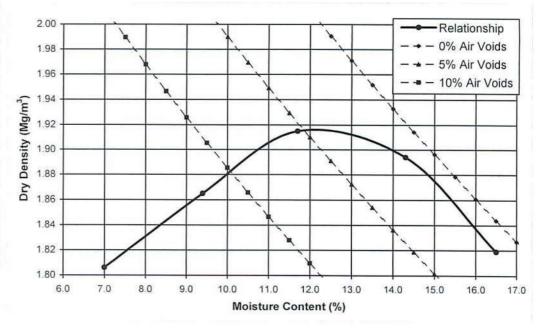
Atkins,

Risley,

Warrington. WA3 6AE

Chadwick House, Birchwood Park,

Certificate of sampling recei	ved No	Laboratory Ref. No:	S30235
Client Ref. No:	TPC2/02-S1 0.21-2.30	Date and Time of Sampl	ing Unknown
Date of Receipt at Lab:	01/02/2010	Date of Start of Test:	03/02/2010
Sampling Location:	Unknown	Name of Source:	Unknown
Method of Sampling:	Unknown	Sampled By:	Client
Soil Description:	Sandy Clay	Type of Sample:	Sandy Clay


RESULTS: Were any unrepresentative lumps present? No

Sample Preparation Procedure:	3.2.4.1		
Sample Preparation Method:	Single		
Particle Density:	2.65	Mg/m ³	(Assumed)
Amount of sample retained on 37.5mm	test siev 0%		

Amount of sample retained on 20mm test sieve: 0%

Moisture	Dry Density
Content (%)	Mg/m ³
7.0	1.81
9.4	1.87
11.7	1.92
14.3	1.89
16.5	1.82

Optimum	Maximum
Moisture	Dry Density
Content (%)	Mg/m ³
12	1.92

Comments/Departure from specified procedures:

() E. R. Goulden Technical Manager Approved Signatories () E. N. Jones Soils Laboratory Manager

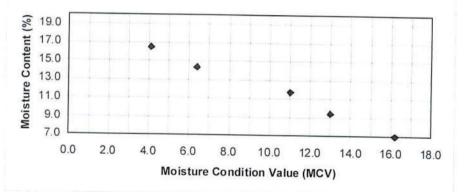
Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE Date: 5th February 2010 Test Report Ref.: 207381

Page 1

Contract:: A55 Warrens Bank

LABORATORY TEST REPORT


TEST REQUIREMENTS: To determine the Moisture Condition Value (MCV) moisture content relation of a soil in accordance with BS 1377: Part 4: 1990 Test 5.5

SAMPLE DETAILS:

Certificate of Sampling Received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Were any unrepresentative lumps present? <u>RESULTS:</u> No S30235 TPC2/02-S1 0.21-2.30 Unknown 01/02/2010 03/02/2010 Unknown Unknown Disturbed Bulk Sample Client Sandy Clay No

Gravel Content >20mm = 0%

Moisture Content (%)	Moisture Condition Value (MCV)
7.0	16.2
9.4	13.0
11.7	11.0
14.3	6.4
16.5	4.1

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE:

() E. R. Goulden Technical Manager Approved Signatories

Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE Date: 4th February 2010 Test Report Ref.: STR 207382

Page 1 of 1

Contract: A55 Warrens Bank

LABORATORY TEST REPORT

TEST REQUIREMENTS:	To determine the Particle Size Distribution (PSD) sedimentation by
	pipette method to BS 1377: Part 2: 1990: clause 9.4.

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling:

Sampled By: Soil Description: Were any unrepresentative lumps present? No S30235 TPC2/02-S2 2.30-3.10 Unknown 01/02/2010 03/02/2010 Unknown Unknown BS 812: Pt. 102/BS EN 932-1/Unknown (Delete as appropriate) Client Sandy Silt No

COMMENTS/DEPARTURE FROM SPECIFIED PROCEDURE:

RESULTS:

SEE ATTACHED

TEST REPORT Ref. STR - 207382 - Page 2 of 2

PARTICLE SIZE				
(mm)	2C % pass			
200	100			
125	100			
90	100			
75	100			
63	100			
50	100			
37.5	100			
28	100			
20	100			
14	99.1			
10	99.0			
6.3	98.6			
5	98.4			
2	97.5			
0.6	96.2			
0.212	82.1			
0.063	43.1			
0.0212	16.3			
0.006	6.1			
0.002	4.3			

100										
90					╫╫───					
					1111					
80		+	1111-7	++++	+++	┝╌┠╶┠╴┠	$\left\{ \left\{ \left\{ 1,1\right\} \right\} \right\}$		┝╋╂╢┠╾───	
70		╆╾╋╋╋	-₩/-	- 1 + 1			<u> </u>			
.≝ 60 			1111/							
bercentage passing 60			Ш							
Centa			XII				†			
₹ 40 †		НИ		╋╌┼╁┼╎	++++		{			╺╾┲╼╊╶╂┼┟┟╫╢
30	- 	/	┼┼┼┤	┟╴┼╴┼┼┼			┞╎╎╎			
20										
10		I								
	-+-++									
0.001	0.01		0.1	Pa	l rticle size mm		10		100	1000
CLAY	Fine Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES	BOULDERS
	SILT			SAND			GRAVEL			

Preparation : No pretreatement used

PARTICLE			
PROPORTIONS			
Cobbles %	0		
Gravel %	2.5		
Sand % 54.4			
Silt %	38.8		
Clay % 4.3			

G.LI Evans - Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE

Contract.: A55 Warrens Bank

Date: 5th February 2010 Test Report Ref.: STR 207384

Page 1 of 1

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS:</u> To determine the Moisture Condition Value (MCV) of a sample at its natural moisture content in accordance with BS 1377 : Part 4 : 1990 Test 5.4

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S30235 TPC2/02-S2 2.30-3.10 Unknown 01/02/2010 02/02/2010 Unknown Unknown Disturbed Bulk Sample Client Sandy Silt N/A

RESULTS:

Interpretation of test results: Directly from graph

Moisture Condition Value (MCV)	= 3.4
Moisture Content (%)	= 16.4

% Particles >20mm removed prior to initial sample = 0

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE:

For material requiring more than 256 blows the Moisture Condition Value should be reported as "more than 18".

() E. R. Goulden Technical Manager Approved Signatories () E. N. Jones Soils Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Date: 4th February 2010 Test Report Ref.: 207385

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS:

Contract: A55 Warrens Bank

To determine the Dry Density and Moisture Content Relationship of soil passing 20mm sieve 2.5kg Rammer Method in accordance with BS 1377: 4: 1990 Clause 3.3

SAMPLE DETAILS:

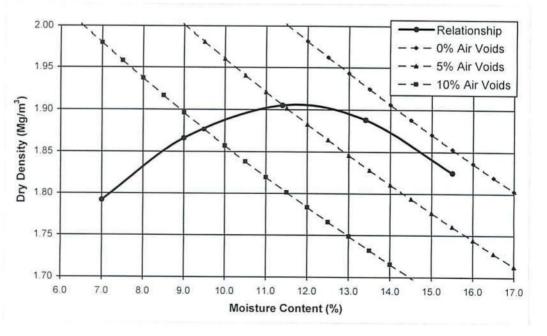
Atkins.

Risley,

Warrington. WA3 6AE

Chadwick House, Birchwood Park,

Certificate of sampling rece	ived No	Laboratory Ref. No:	S30235
Client Ref. No:	TPC2/02-S2 2.30-3.10	Date and Time of Sampl	ing Unknown
Date of Receipt at Lab:	01/02/2010	Date of Start of Test:	03/02/2010
Sampling Location:	Unknown	Name of Source:	Unknown
Method of Sampling:	Unknown	Sampled By:	Client
Soil Description:	Sandy Silt	Type of Sample:	Sandy Silt


RESULTS: Were any unrepresentative lumps present? No

Sample Preparation Procedure:	3.2.4.1		
Sample Preparation Method:	Single		
Particle Density:	2.60	Mg/m ³	(Assumed)
Amount of sample retained on 37.5mm tes	st siev 0%		

Amount of sample retained on 20mm test sieve: 0%

Moisture	Dry Density		
Content (%)	Mg/m ³		
7.0	1.79		
9.0	1.87		
11.4	1.91		
13.4	1.89		
15.5	1.83		

Optimum	Maximum	
Moisture	Dry Density	
Content (%)	Mg/m ³	
12	1.91	

Comments/Departure from specified procedures:

() E. R. Goulden Technical Manager Approved Signatories () E. N. Jones Soils Laboratory Manager

ans

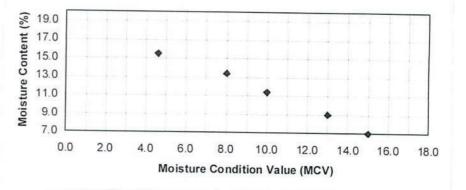
Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE Date: 5th February 2010 Test Report Ref.: 207386

Page 1

Contract:: A55 Warrens Bank

LABORATORY TEST REPORT


TEST REQUIREMENTS: To determine the Moisture Condition Value (MCV) moisture content relation of a soil in accordance with BS 1377: Part 4: 1990 Test 5.5

SAMPLE DETAILS:

Certificate of Sampling Received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Were any unrepresentative lumps present? <u>RESULTS:</u> No S30235 TPC2/02-S2 2.30-3.10 Unknown 01/02/2010 03/02/2010 Unknown Unknown Disturbed Bulk Sample Client Sandy Silt No

Gravel Content >20mm = 0%

Moisture Content (%)	Moisture Condition Value (MCV)
7.0	15.0
9.0	13.0
11.4	10.0
13.4	8.0
15.5	4.6

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE:

() E. R. Goulden Technical Manager Approved Signatories

() E. N. Jones Soils Laboratory Manager

Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE

Contract.: A55 Warrens Bank

Date: 5th February 2010 Test Report Ref.: STR 207393

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Moisture Content of Soils - DEFINITIVE OVEN - DRYING METHOD. In accordance with BS 1377 : Part 2 : 1990 : clause 3.2

SAMPLE DETAILS:

Certificate of Sampling Received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Were any unrepresentative lumps present? No S30235 TPC2/04-S1 0.20-2.30 Unknown 01/02/2010 02/02/2010 Unknown Unknown Disturbed Bulk Sample Client Gravelly Sandy Clay No

RESULTS:

Moisture Content (%) = 16.7

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE:

None

() E. R. Goulden Technical Manager Approved Signatories () E. N. Jones Soils Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE

Contract.: A55 Warren Bank

Date: 4th February 2010 Test Report Ref.: STR 207394

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the Plastic Limit, Liquid Limit, and Plasticity Index of sample in accordance with BS 1377:Part 2:1990 Clause 5.3, Clause 4.3, and Clause 5.4.

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S30235 TPC2/04/S1 0.20-2.30 Unknown 01/02/2010 Unknown Unknown Disturbed Bulk Sample Client Gravelly Sandy Clay N/A

RESULTS:

History of sample: Natural state/After wet sieving % Materials passing 425µm = 92.7 Plastic Limit = 13 Liquid Limit = 23 Plasticity Index = 10

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE:

() E. R. Goulden Technical Manager Approved Signatories () E. N. Jones Soils Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE

Contract.: A55 Warrens Bank

Date: 5th February 2010 Test Report Ref.: STR 207395

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the Moisture Condition Value (MCV) of a sample at its natural moisture content in accordance with BS 1377 : Part 4 : 1990 Test 5.4

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S30235 TPC2/04-S1 0.20-2.30 Unknown 01/02/2010 02/02/2010 Unknown Unknown Disturbed Bulk Sample Client Gravelly Sandy Clay N/A

RESULTS:

Interpretation of test results: Directly from graph

Moisture Condition Value (MCV)	= 3.4
Moisture Content (%)	= 16.7

% Particles >20mm removed prior to initial sample = 0

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE:

For material requiring more than 256 blows the Moisture Condition Value should be reported as "more than 18".

() E. R. Goulden Technical Manager Approved Signatories

() E. N. Jones Soils Laboratory Manager

Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Date: 4th February 2010 Test Report Ref.: 207397

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE Contract: A55 Warrens Bank

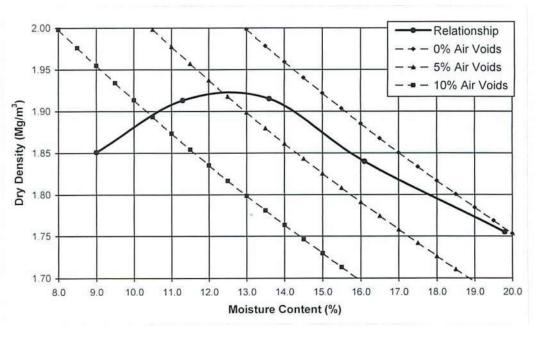
Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Dry Density and Moisture Content Relationship of soil passing 20mm sieve 2.5kg Rammer Method in accordance with BS 1377: 4: 1990 Clause 3.3

SAMPLE DETAILS:

Certificate of sampling received No		Laboratory Ref. No:	S30235
Client Ref. No: TPC2/04-S1 0.20-2.30		Date and Time of Sampling Unknown	
Date of Receipt at Lab: 01/02/2010		Date of Start of Test:	03/02/2010
Sampling Location:	Unknown	Name of Source:	Unknown
Method of Sampling:	Unknown	Sampled By:	Client
Soil Description:	Gravelly Sandy Clay	Type of Sample:	Gravelly Sandy Clay


RESULTS: Were any unrepresentative lumps present? No

Sample Preparation Procedure:	3.2.4.1		
Sample Preparation Method:	Single		
Particle Density:	2.70	Mg/m ³	(Assumed)
Amount of sample retained on 37.5mm t	est siev 0%		

Amount of sample retained on 20mm test sieve: 0%

Moisture	Dry Density
Content (%)	Mg/m ³
9.0	1.85
11.3	1.91
13.6	1.92
16.1	1.84
19.8	1.76

Optimum	Maximum
Moisture	Dry Density
Content (%)	Mg/m ³
13	1.92

Comments/Departure from specified procedures:

() E. R. Goulden Technical Manager Approved Signatories () E. N. Jones Soils Laboratory Manager

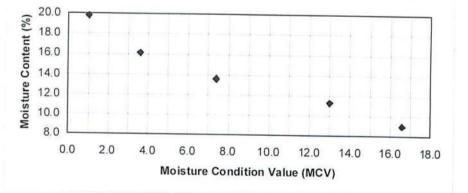
Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE Date: 5th February 2010 Test Report Ref.: 207396

Page 1

Contract:: A55 Warrens Bank

LABORATORY TEST REPORT


TEST REQUIREMENTS: To determine the Moisture Condition Value (MCV) moisture content relation of a soil in accordance with BS 1377: Part 4: 1990 Test 5.5

SAMPLE DETAILS:

Certificate of Sampling Received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Were any unrepresentative lumps present? <u>RESULTS:</u> No S30235 TPC2/04-S1 0.20-2.30 Unknown 01/02/2010 03/02/2010 Unknown Unknown Disturbed Bulk Sample Client Gravelly Sandy Clay No

Gravel Content >20mm = 0%

Moisture Content (%)	Moisture Condition Value (MCV)
9.0	16.6
11.3	13.0
13.6	7.4
16.1	3.6
19.8	1.0

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE:

() E. R. Goulden Technical Manager Approved Signatories

() E. N. Jones Soils Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE

Contract.: A55 Warrens Bank

Date: 5th February 2010 Test Report Ref.: STR 207387

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Moisture Content of Soils - DEFINITIVE OVEN -DRYING METHOD. In accordance with BS 1377 : Part 2 : 1990 : clause 3.2

SAMPLE DETAILS:

Certificate of Sampling Received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Were any unrepresentative lumps present? No S30235 TPC2/03-S1 0.21-2.30 Unknown 01/02/2010 02/02/2010 Unknown Unknown Disturbed Bulk Sample Client Sandy Clay No

RESULTS:

Moisture Content (%) = 18.1

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE:

None

() E. R. Goulden Technical Manager Approved Signatories () E. N. Jones Soils Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park. Risley. Warrington. WA3 6AE

Contract.: A55 Warren Bank

Date: 4th February 2010 Test Report Ref.: STR 207388

Page 1 of 1

LABORATORY TEST REPORT

To determine the Plastic Limit, Liquid Limit, and Plasticity Index of **TEST REQUIREMENTS:** sample in accordance with BS 1377:Part 2:1990 Clause 5.3, Clause 4.3, and Clause 5.4.

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification:

No S30235 TPC2/03/S1 0.21-2.30 Unknown 01/02/2010 01/02/2010 Unknown Unknown **Disturbed Bulk Sample** Client Sandy Clay N/A

RESULTS:

History of sample: Natural state/After wet sieving % Materials passing 425µm 88.4 = **Plastic Limit** = **Liquid Limit** 21 = Plasticity Index = N/A

Non Plastic

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE:

() E. R. Goulden **Technical Manager** Approved Signatories () E. N. Jones Soils Laboratory Manager

L. Evans

Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE Date: 4th February 2010 Test Report Ref.: STR 207389

Page 1 of 1

Contract: A55 Warrens Bank

LABORATORY TEST REPORT

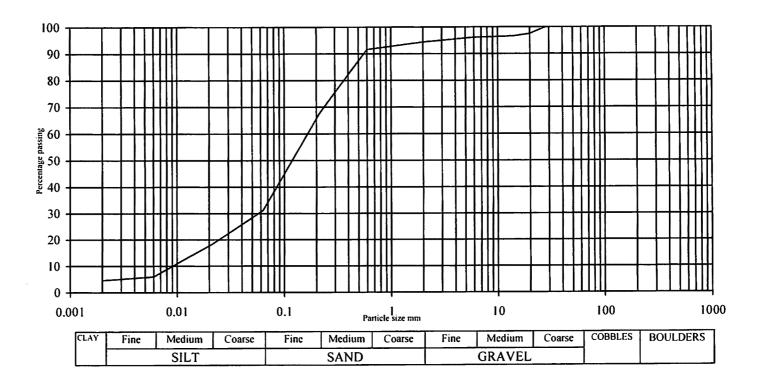
TEST REQUIREMENTS: To determine the Particle Size Distribution (PSD) sedimentation by pipette method to BS 1377: Part 2: 1990: clause 9.4.

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling:

Sampled By: Soil Description: Were any unrepresentative lumps present? No S30235 TPC2/03-S1 0.21-2.30 Unknown 01/02/2010 03/02/2010 Unknown Unknown BS-812: Pt. 102/BS EN 932-1/Unknown (Delete as appropriate) Client Sandy Clay No

COMMENTS/DEPARTURE FROM SPECIFIED PROCEDURE:


RESULTS:

SEE ATTACHED

PARTICLE		
SIZE		
(mm)	% pass	
200	100	
125	100	
90	100	
75	100	
63	100	
50	100	
37.5	100	
28	100	
20	97.5	
14	96.6	
10	96.4	
6.3	96.2	
5	95.9	
2	94.4	
0.6	91.6	
0.212	67.5	
0.063	31.2	
0.0212	18.3	
0.006	6.0	
0.002 4.6		

Preparation : No pre-	-
treatement used	

PARTICLE		
PROPORTIONS		
Cobbles %	0	
Gravel %	5.6	
Sand %	63.2	
Silt %	26.6	
Clay %	4.6	

G.EFEVANS - Laboratory Manager

TEST REPORT Ref. STR - 207389 - Page 2 of 2

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE

Contract.: A55 Warrens Bank

Date: 5th February 2010 Test Report Ref.: STR 207390

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Moisture Condition Value (MCV) of a sample at its natural moisture content in accordance with BS 1377 : Part 4 : 1990 Test 5.4

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S30235 TPC2/03-S1 0.21-2.30 Unknown 01/02/2010 02/02/2010 Unknown Unknown Disturbed Bulk Sample Client Sandy Clay N/A

RESULTS:

Interpretation of test results: Directly from graph

Moisture Condition Value (MCV)	= 2.1
Moisture Content (%)	= 18.1

% Particles >20mm removed prior to initial sample = 2.5

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE:

For material requiring more than 256 blows the Moisture Condition Value should be reported as "more than 18".

() E. R. Goulden Technical Manager Approved Signatories () E. N. Jones Soils Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Date: 4th February 2010 Test Report Ref.: 207391

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Dry Density and Moisture Content Relationship of soil passing 20mm sieve 2.5kg Rammer Method in accordance with BS 1377: 4: 1990 Clause 3.3

SAMPLE DETAILS:

Contract: A55 Warrens Bank

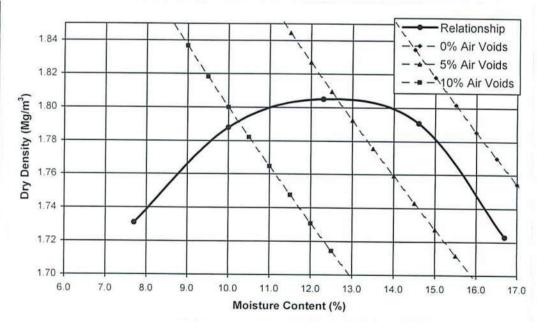
Atkins.

Risley,

Warrington. WA3 6AE

Chadwick House, Birchwood Park,

Certificate of sampling recei	ived No	Laboratory Ref. No:	S30235
Client Ref. No: TPC2/03-S1 0.21-2.30		Date and Time of Sampling Unknown	
Date of Receipt at Lab:	01/02/2010	Date of Start of Test:	03/02/2010
Sampling Location:	Unknown	Name of Source:	Unknown
Method of Sampling:	Unknown	Sampled By:	Client
Soil Description:	Sandy Clay	Type of Sample:	Sandy Clay


RESULTS: Were any unrepresentative lumps present? No

Sample Preparation Procedure:	3.2.4.2		
Sample Preparation Method:	Single		
Particle Density:	2.50	Mg/m ³	(Assumed)
Amount of sample retained on 37.5mm t	est siev 0%		

Amount of sample retained on 20mm test sieve: 3%

Moisture	Dry Density
Content (%)	Mg/m ³
7.7	1.73
10.0	1.79
12.3	1.81
14.6	1.79
16.7	1.72

Optimum	Maximum
Moisture	Dry Density
Content (%)	Mg/m ³
12	1.81

Comments/Departure from specified procedures:

() E. R. Goulden Technical Manager Approved Signatories () E. N. Jones Soils Laboratory Manager

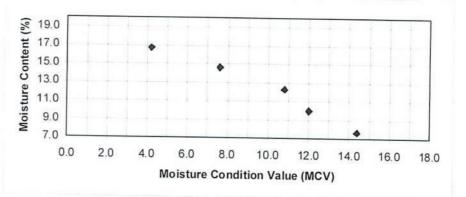
Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE Date: 5th February 2010 Test Report Ref.: 207392

Page 1

Contract:: A55 Warrens Bank

LABORATORY TEST REPORT


TEST REQUIREMENTS: To determine the Moisture Condition Value (MCV) moisture content relation of a soil in accordance with BS 1377: Part 4: 1990 Test 5.5

SAMPLE DETAILS:	ooraario
Certificate of Sampling Received:	No
Laboratory Ref. No:	S302
Client Ref. No:	TPC2
Date and Time of Sampling:	Unkn
Date of Receipt at Lab:	01/02
Date of Start of Test:	03/02
Sampling Location:	Unkn
Name of Source:	Unkn
Method of Sampling:	Distu
Sampled By:	Client
Material Description:	Sand
Were any unrepresentative lumps present?	No
RESULTS:	

No S30235 TPC2/03-S1 0.21-2.30 Unknown 01/02/2010 03/02/2010 Unknown Unknown Disturbed Bulk Sample Client Sandy Clay No

Gravel Content >20mm = 2.5%

Moisture Content (%)	Moisture Condition Value (MCV)
7.7	14.4
10.0	12.0
12.3	10.8
14.6	7.6
16.7	4.2

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE:

() E. R. Goulden Technical Manager Approved Signatories () E. N. Jones Soils Laboratory Manager

() G. LL. Evans Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE Contract: A55 Warren Bank Date: 3rd February 2010 Test Report Ref.: STR 207398

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS:

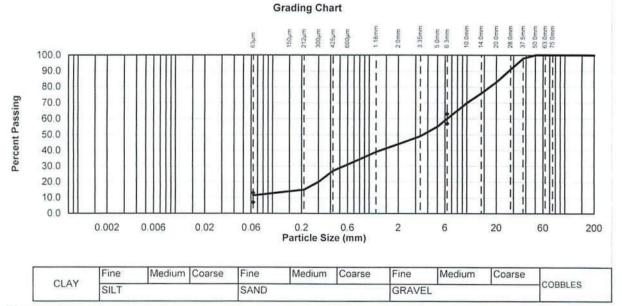
To determine the Particle Size Distribution (PSD) of a soil samplewashing and sieving method in accordance with BS 1377-2: 1990 clause 9.2

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No.:	S30235
Client Ref. No:	TPC2/04-S2 2.30-3.10
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	01/02/2010
Date of Start of Test:	03/02/2010
Sampling Location:	Unknown
Name of Source:	Unknown
Method of Sampling:	Unknown
Sampled By:	Client
Soil Description	Very Sandy Gravel
Target Specification:	N/A
Departure from Specified Procedure:	N/A

RESULTS: See Attached

No unrepresentative lumps were present



Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Test Report Ref .: STR 207398 Page 2 of 2

	LDESCRIPTION
BS TEST SIEVE NOMINAL APERTURE SIZE	CUMULATIVE PERCENTAGE PASSING
200.0 mm	100
125.0 mm	100
75.0 mm	100
63.0 mm	100
50.0 mm	100
37.5 mm	98
28.0 mm	91
20.0 mm	83
14.0 mm	76
10.0 mm	70
6.3 mm	60
5.0 mm	55
3.35 mm	49
2.0 mm	44
1.18 mm	39
0.600 mm	31
0.425 mm	27
0.300 mm	20
0.212 mm	15
0.150 mm	14
0.063 mm	11.4

Comments:

Coefficient of Uniformity = 100

() E. R. Goulden Technical Manager Approved Signatories () E. N. Jones Soils Laboratory Manager

G. Evans

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE

Contract.: A55 Warrens Bank

Date: 5th February 2010 Test Report Ref.: STR 207399

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Moisture Condition Value (MCV) of a sample at its natural moisture content in accordance with BS 1377 : Part 4 : 1990 Test 5.4

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S30235 TPC2/04-S2 2.30-3.10 Unknown 01/02/2010 02/02/2010 Unknown Unknown Disturbed Bulk Sample Client Very Sandy Gravel N/A

RESULTS:

Interpretation of test results: Directly from graph

Moisture Condition Value (MCV)	= 7.6
Moisture Content (%)	= 8.5

% Particles >20mm removed prior to initial sample = 17

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE:

For material requiring more than 256 blows the Moisture Condition Value should be reported as "more than 18".

() E. R. Goulden Technical Manager Approved Signatories

() E. N. Jones Soils Laboratory Manager

Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Date: 4th February 2010 Test Report Ref.: 207400

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS:

Contract.: A55 Warrens Bank

To determine the Dry Density and Moisture Content Relationship of soil passing 20mm sieve - Vibrating Hammer Method in accordance with BS 1377: 4: 1990 Clause 3.7

SAMPLE DETAILS:

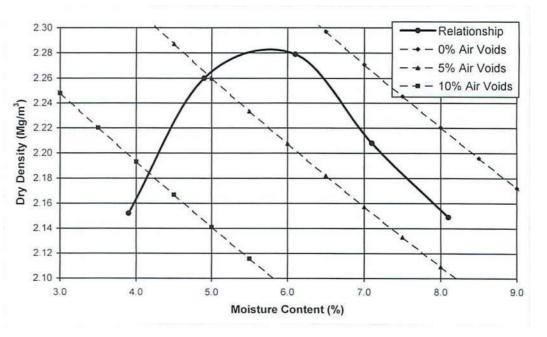
Atkins.

Risley, Warrington.

WA3 6AE

Chadwick House, Birchwood Park,

Certificate of sampling recei	ved No	Laboratory Ref. No:	S30235
Client Ref. No:	TPC2/04-S2 2.30-3.10	Date and Time of Sampling	Unknown
Date of Receipt at Lab:	01/02/2010	Date of Start of Test:	02/02/2010
Sampling Location:	Unknown	Name of Source:	Unknown
Method of Sampling:	Unknown	Sampled By:	Client
Soil Description:	Very Sandy Gravel	Type of Sample:	Very Sandy Gravel


RESULTS: Were any unrepresentative lumps present? No

Sample Preparation Procedure:	3.2.5.2		
Sample Preparation Method:	Single		
Particle Density:	2.70	Mg/m ³	(Assumed)
Amount of sample retained on 37.5mm	test siev 2%		

Amount of sample retained on 20mm test sieve: 17%

Moisture	Dry Density
Content (%)	Mg/m ³
3.9	2.15
4.9	2.26
6.1	2.28
7.1	2.21
8.1	2.15

Optimum	Maximum
Moisture	Dry Density
Content (%)	Mg/m ³
5.8	2.28

Comments/Departure from specified procedures:

() E. R. Goulden Technical Manager Approved Signatories () E. N. Jones Soils Laboratory Manager

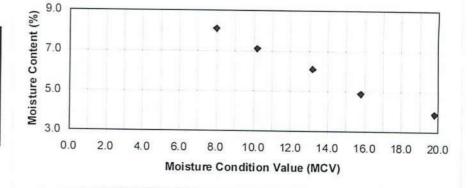
Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE Date: 5th February 2010 Test Report Ref.: 207401

Page 1

Contract:: A55 Warrens Bank

LABORATORY TEST REPORT


TEST REQUIREMENTS: To determine the Moisture Condition Value (MCV) moisture content relation of a soil in accordance with BS 1377: Part 4: 1990 Test 5.5

SAMPLE DETAILS:

Certificate of Sampling Received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Were any unrepresentative lumps present? <u>RESULTS:</u> No S30235 TPC2/04-S2 2.30-3.10 Unknown 01/02/2010 03/02/2010 Unknown Unknown Disturbed Bulk Sample Client Very Sandy Gravel No

Gravel Content >20mm = 17%

Moisture Content (%)	Moisture Condition Value (MCV)
3.9	19.8
4.9	15.8
6.1	13.2
7.1	10.2
8.1	8.0

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE:

() E. R. Goulden Technical Manager Approved Signatories

() E. N. Jones Soils Laboratory Manager

ans

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE Date: 4th February 2010 Test Report Ref.: STR 207402

Page 1 of 1

Contract: A55 Warrens Bank

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS:</u> To determine the Particle Size Distribution (PSD) sedimentation by pipette method to BS 1377: Part 2: 1990: clause 9.4.

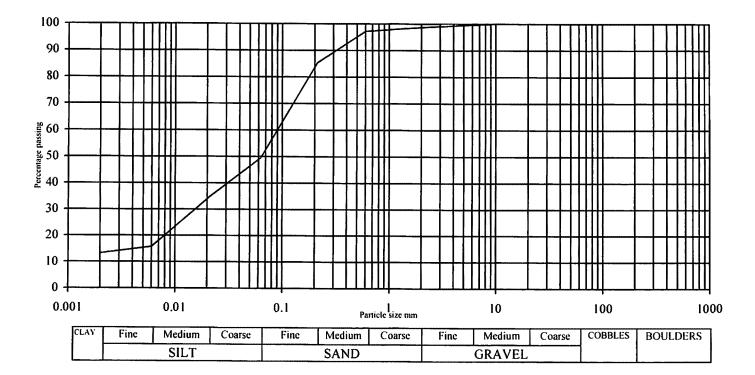
SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling:

Sampled By: Soil Description: Were any unrepresentative lumps present? No S30235 TPF1/01-S1 0.24-1.50 Unknown 01/02/2010 03/02/2010 Unknown Unknown BS 812: Pt. 102/BS EN 932-1/Unknown (Delete as appropriate) Client Very Silty Sand No

COMMENTS/DEPARTURE FROM SPECIFIED PROCEDURE:

RESULTS:


SEE ATTACHED

TEST REPORT Ref. STR - 207402 - Page 2 of 2

PARTICLE SIZE		
(mm)	% pass	
200	100	
125	100	
90	100	
75	100	
63	100	
50	100	
37.5	100	
28	100	
20	100	
14	100	
10	100.0	
6.3	99.7	
5 2	99.6	
	98.7	
0.6	97.2	
0.212	85.3	
0.063	49.6	
0.0212	34.8	
0.006	15.8	
0.002	13.2	

Preparation : No pre-
treatement used

PARTICLE		
PROPORTIONS		
Cobbles % 0		
Gravel % 1.3		
Sand %	49.1	
Silt % 36.4		
Clay % 13.2		

Evans - Laboratory Manager G.M

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE

Contract.: A55 Warrens Bank

Date: 5th February 2010 Test Report Ref.: STR 207404

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Moisture Condition Value (MCV) of a sample at its natural moisture content in accordance with BS 1377 : Part 4 : 1990 Test 5.4

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S30235 TPF1/01-S1 0.24-1.50 Unknown 01/02/2010 02/02/2010 Unknown Unknown Disturbed Bulk Sample Client Very Silty Sand N/A

RESULTS:

Interpretation of test results: Directly from graph

Moisture Condition Value (MCV)	= 0
Moisture Content (%)	= 21.1

% Particles >20mm removed prior to initial sample = 0

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE:

For material requiring more than 256 blows the Moisture Condition Value should be reported as "more than 18".

() E. R. Goulden Technical Manager Approved Signatories () E. N. Jones Soils Laboratory Manager

Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Date: 4th February 2010 Test Report Ref.: 207405

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Dry Density and Moisture Content Relationship of soil passing 20mm sieve 2.5kg Rammer Method in accordance with BS 1377: 4: 1990 Clause 3.3

SAMPLE DETAILS:

Contract: A55 Warrens Bank

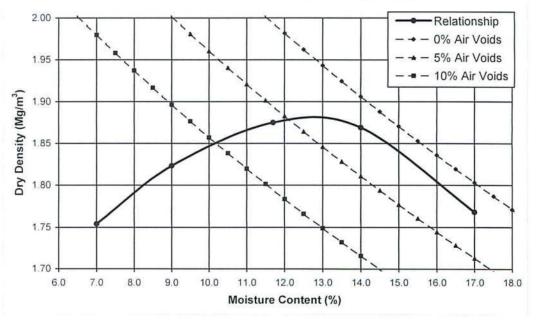
Atkins,

Risley,

Warrington. WA3 6AE

Chadwick House, Birchwood Park,

Certificate of sampling recei	ived No	Laboratory Ref. No:	S30235
Client Ref. No:	TPF1/01-S1 0.24-1.50	Date and Time of Sampli	ing Unknown
Date of Receipt at Lab:	01/02/2010	Date of Start of Test:	03/02/2010
Sampling Location:	Unknown	Name of Source:	Unknown
Method of Sampling:	Unknown	Sampled By:	Client
Soil Description:	Very Silty Sand	Type of Sample:	Very Silty Sand


RESULTS: Were any unrepresentative lumps present? No

Sample Preparation Procedure:	3.2.4.1		
Sample Preparation Method:	Single		
Particle Density:	2.60	Mg/m ³	(Assumed)
Amount of sample retained on 37.5mm to	est siev 0%		

Amount of sample retained on 20mm test sieve: 0%

Moisture	Dry Density
Content (%)	Mg/m ³
7.0	1.75
9.0	1.82
11.7	1.88
14.0	1.87
17.0	1.77

Optimum	Maximum
Moisture	Dry Density
Content (%)	Mg/m ³
13	1.88

Comments/Departure from specified procedures:

() E. R. Goulden Technical Manager Approved Signatories () E. N. Jones Soils Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

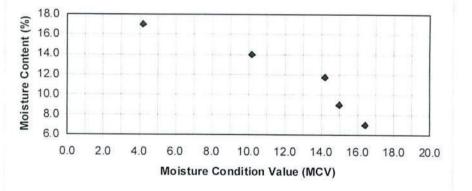
Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE Date: 5th February 2010 Test Report Ref.: 207406

Page 1

Contract:: A55 Warrens Bank

LABORATORY TEST REPORT

TEST REQUIREMENTS:	To determine the Moisture Condition Value (MCV) moisture content
	relation of a soil in accordance with BS 1377: Part 4: 1990 Test 5.5


SAMPLE DETAILS:

Certificate of Sampling Received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Were any unrepresentative lumps present? <u>RESULTS:</u>

No S30235 TPF1/01-S1 0.24-1.50 Unknown 01/02/2010 03/02/2010 Unknown Unknown Disturbed Bulk Sample Client Very Silty Sand No

Gravel Content >20mm = 0%

Moisture Content (%)	Moisture Condition Value (MCV)
7.0	16.4
9.0	15.0
11.7	14.2
14.0	10.2
17.0	4.2

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE:

() E. R. Goulden Technical Manager Approved Signatories

() E. N. Jones Soils Laboratory Manager

Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley. Warrington. WA3 6AE

Contract.: A55 Warrens Bank

Date: 5th February 2010 Test Report Ref.: STR 207407

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Moisture Content of Soils - DEFINITIVE OVEN -DRYING METHOD. In accordance with BS 1377 : Part 2 : 1990 : clause 3.2

SAMPLE DETAILS:

Certificate of Sampling Received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Were any unrepresentative lumps present?

No S30235 TPF1/03-S1 0.40-1.80 Unknown 01/02/2010 02/02/2010 Unknown Unknown **Disturbed Bulk Sample** Client **Gravelly Sandy Clay** No

RESULTS:

Moisture Content (%) = 14.6

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE:

None

() E. R. Goulden Technical Manager Approved Signatories () E. N. Jones Soils Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE

Contract.: A55 Warren Bank

Date: 4th February 2010 Test Report Ref.: STR 207408

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Plastic Limit, Liquid Limit, and Plasticity Index of sample in accordance with BS 1377:Part 2:1990 Clause 5.3, Clause 4.3, and Clause 5.4.

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S30235 TPF1/03/S1 0.40-1.80 Unknown 01/02/2010 Unknown Unknown Disturbed Bulk Sample Client Gravelly Sandy Clay N/A

RESULTS:

History of sample:Natural-state/After wet sieving% Materials passing 425μm=89.815Liquid Limit=2828Plasticity Index=13

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE:

() E. R. Goulden Technical Manager Approved Signatories () E. N. Jones Soils Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE Date: 4th February 2010 Test Report Ref.: STR 207409

Page 1 of 1

Contract: A55 Warrens Bank

LABORATORY TEST REPORT

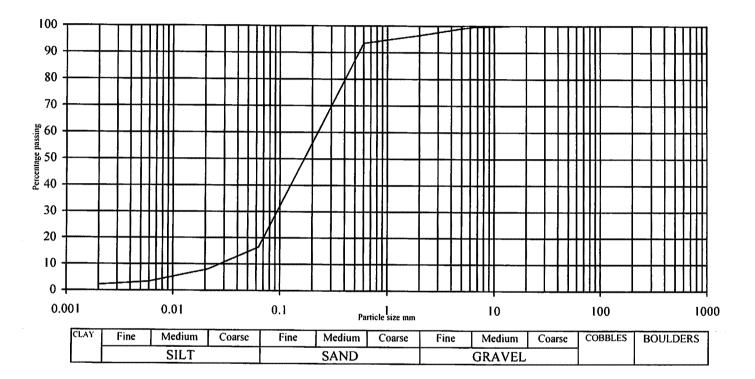
TEST REQUIREMENTS: To determine the Particle Size Distribution (PSD) sedimentation by pipette method to **BS 1377: Part 2: 1990: clause 9.4.**

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling:

Sampled By: Soil Description: Were any unrepresentative lumps present? No S30235 TPF1/03-S2 1.80-2.10 Unknown 01/02/2010 03/02/2010 Unknown Unknown BS 812: Pt. 102/BS EN 932-1/Unknown (Delete as appropriate) Client Silty Sand No

COMMENTS/DEPARTURE FROM SPECIFIED PROCEDURE:


RESULTS:

SEE ATTACHED

PARTICLE		
SI	ZE	
(mm)	% pass	
200	100	
125	100	
90	100	
75	100	
63	100	
50	100	
37.5	100	
28	100	
20	100	
14	100	
10 99.9		
6.3 99.6		
5 <u>99.1</u> 2 <u>96.5</u>		
2 96.5		
0.6 93.5		
0.212	57.9	
0.063	16.5	
0.0212	8.1	
0.006 3.4		
0.002 2.2		

Preparation :	No pre-
treatement	used

PARTICLE			
PROPORTIONS			
Cobbles % 0			
Gravel % 3.5			
Sand % 80.0			
Silt % 14.3			
Clay % 2.2			

G.LI Evans - Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE

Contract.: A55 Warrens Bank

Date: 5th February 2010 Test Report Ref.: STR 207411

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Moisture Content of Soils - DEFINITIVE OVEN -DRYING METHOD. In accordance with BS 1377 : Part 2 : 1990 : clause 3.2

SAMPLE DETAILS:

Certificate of Sampling Received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Were any unrepresentative lumps present? No S30235 TPF1/04-S1 0.50-2.00 Unknown 01/02/2010 02/02/2010 Unknown Unknown Disturbed Bulk Sample Client Sandy Clay No

RESULTS:

Moisture Content (%) = 16.5

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE:

None

() E. R. Goulden Technical Manager Approved Signatories () E. N. Jones Soils Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE

Contract.: A55 Warren Bank

Date: 4th February 2010 Test Report Ref.: STR 207412

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the Plastic Limit, Liquid Limit, and Plasticity Index of sample in accordance with BS 1377:Part 2:1990 Clause 5.3, Clause 4.3, and Clause 5.4.

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S30235 TPF1/04/S1 0.50-2.00 Unknown 01/02/2010 01/02/2010 Unknown Unknown Disturbed Bulk Sample Client Sandy Clay N/A

RESULTS:

History of sample:Natural-state/After wet sieving% Materials passing 425μm=98.9=Plastic Limit=13=Liquid Limit=22=Plasticity Index=9

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE:

() E. R. Goulden Technical Manager Approved Signatories () E. N. Jones Soils Laboratory Manager

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE Contract: A55 Warrens Bank Date: 9th February 2010 Test Report Ref.: STR 207359

Page 1 of 5

LABORATORY TEST REPORT

TEST REQUIREMENTS:	To determine the Shear Strength by Direct Shear (Small Shear Box). In
	accordance with BS 1377 : Part 7 1990 : Clause 4

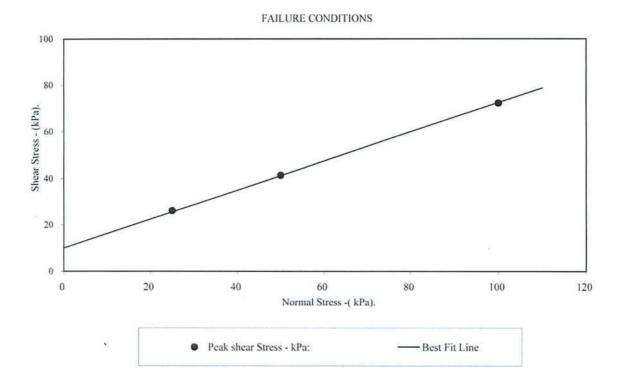
SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S30235 TPC1/01-S2 1.00-1.40 Unknown 01/02/2010 02/02/2010 Unknown Unknown Disturbed Bulk Sample Client Silty Clayey Sand N/A

TEST RESULTS:

See Attached

() E. R. Goulden, Technical Manager - () E. N. Jones, Soils Laboratory Manager - () G. LL. Evans, Laboratory Manager Approved Signatories

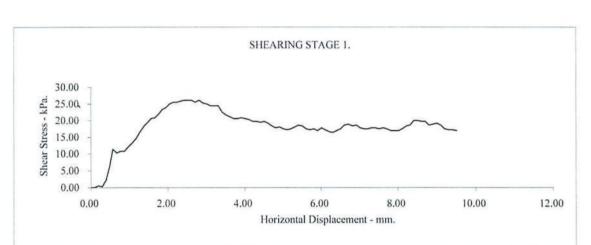

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com

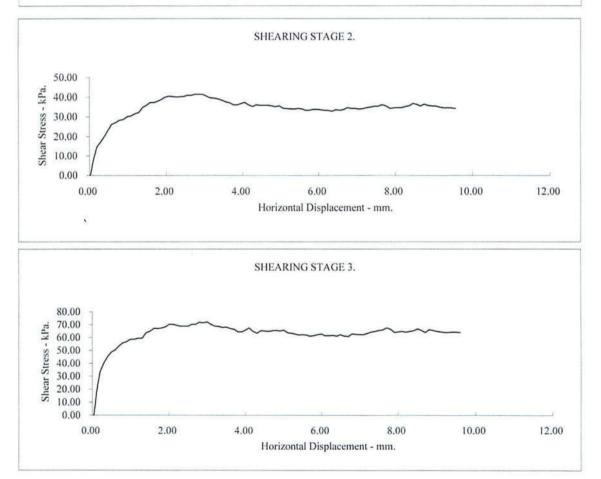
Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

CONSOLIDATED DRAINED SHEARBOX TEST.

BS1377:Part 7:4.5 :1990.

Borehole/Sample Number:	TPC1/01 S2	Depth (m):	1.00-1.40	
Sample Type:	Remoulded (Light Tamping) Material above 2mm removed.			
Particle Density - Mg/m3:		2.65 (Assumed	l)	
Specimen Tested:	Submerged			
Sample Description:				
Reddish brown silty clayey SA	ND (fine-medium).			
STAGE		1	2	3
Initial Conditions				
Height - mm:		23.70	23.70	23.70
Length - mm:		60.00	60.00	60.00
Moisture Content - %:		14	14	14
Bulk Density - Mg/m3:		2.15	2.16	2.17
Dry Density - Mg/m3:		1.89	1.90	1.90
Voids Ratio:		0.4045	0.3978	0.3933
Normal Pressure- kPa		25	50	100
Consolidation				
Consolidated Height - mm:		23.66	23.55	23.44
Shear				
Rate of Strain (mm/min)		0.01	0 0.010	0.010
Strain at peak shear stress (%)		2.81	2.95	2.99
Peak shear Stress - kPa:		26	41	72
PEAK				
Angle of Shearing Resistance:(6))			32.0
Effective Cohesion - kPa:				10

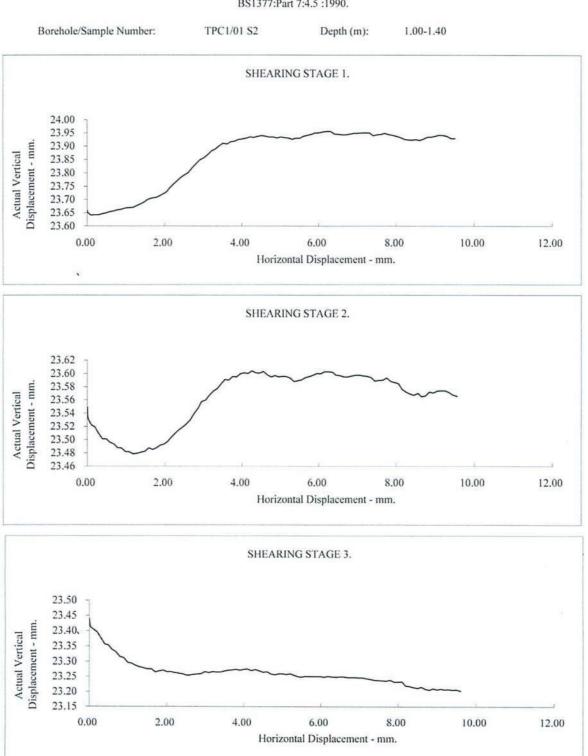

Page 2 of 5



Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

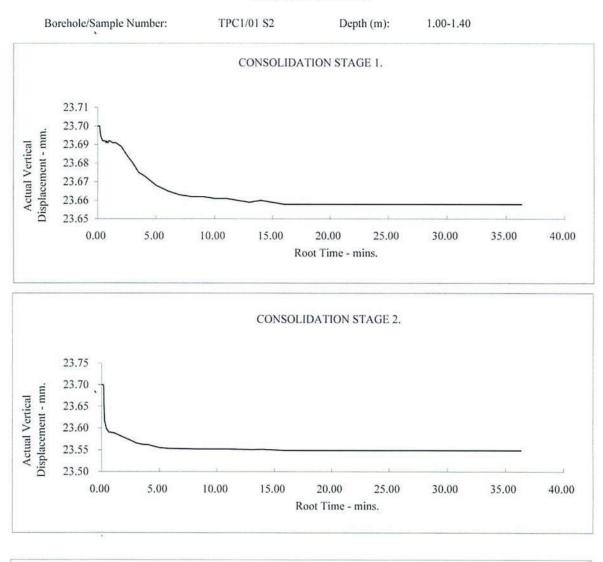
CONSOLIDATED DRAINED SHEARBOX TEST. BS1377:Part 7:4.5 :1990.

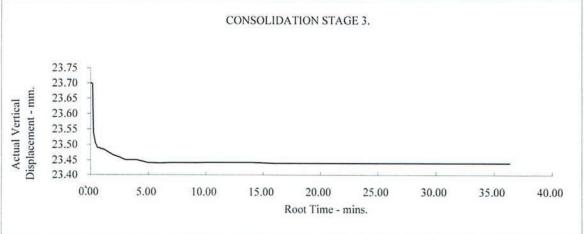
Borehole/Sample Number: TPC1/01 S2 Depth (m): 1.00-1.40



Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

CONSOLIDATED DRAINED SHEARBOX TEST.




BS1377:Part 7:4.5 :1990.

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

CONSOLIDATED DRAINED SHEARBOX TEST. BS1377:Part 7:4.5 :1990.

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE Contract: A55 Warrens Bank Date: 9th February 2010 Test Report Ref.: STR 207373

Page 1 of 5

LABORATORY TEST REPORT

TEST REQUIREMENTS:	To determine the Shear Strength by Direct Shear (Small Shear Box). In
	accordance with BS 1377 : Part 7 1990 : Clause 4

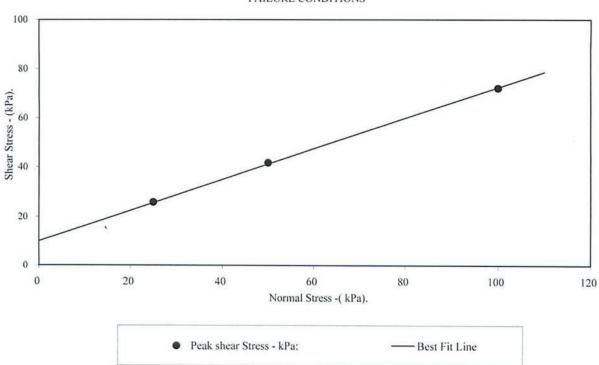
SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification:

No S30235 TPC1/02-S3 1.50-2.70 Unknown 01/02/2010 02/02/2010 Unknown Unknown Disturbed Bulk Sample Client Silty Sand N/A

TEST RESULTS:

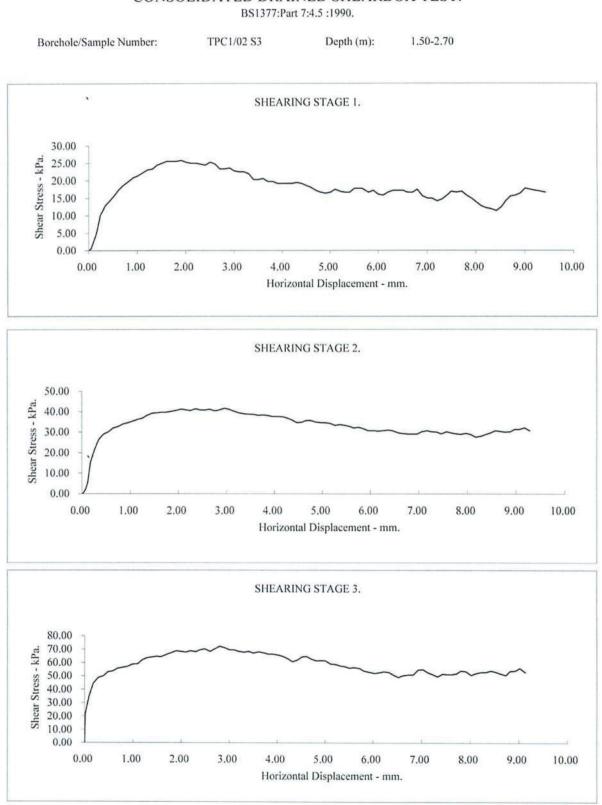
See Attached


() E. R. Goulden, Technical Manager - () E. N. Jones, Soils Laboratory Manager - () G. LL. Evans, Laboratory Manager Approved Signatories

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

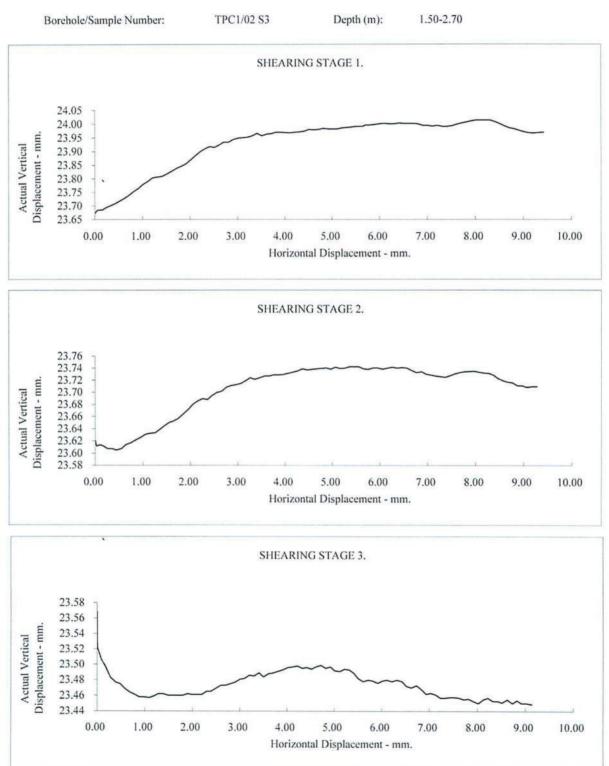
CONSOLIDATED DRAINED SHEARBOX TEST. BS1377:Part 7:4.5 :1990.

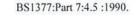
Borehole/Sample Number:	TPC1/02 S3	Depth (m): 1.	50-2.70	
Sample Type:	Remoulded (Light Tamping) Material above 2mm removed.			
Particle Density - Mg/m3:		2.65 (Assumed)		
Specimen Tested:	Submerged			
Sample Description: Reddish brown silty clayey SA	ND			
STAGE	intp.	1	2	3
Initial Conditions				
Height - mm:		23.70	23.70	23.70
Length - mm:		60.00	60.00	60.00
Moisture Content - %:		17	17	17
Bulk Density - Mg/m3:		2.13	2.14	2.16
Dry Density - Mg/m3:		1.82	1.82	1.84
Voids Ratio:		0.4564	0.4523	0.4381
Normal Pressure- kPa		25	50	100
Consolidation				
Consolidated Height - mm:		23.67	23.62	23.57
Shear				
Rate of Strain (mm/min)		0.010	0.010	0.010
Strain at peak shear stress (%)		1.91	2.96	2.80
Peak shear Stress - kPa:		26	42	72
PEAK				
Angle of Shearing Resistance:(6	4			32.0
Effective Cohesion - kPa:				10

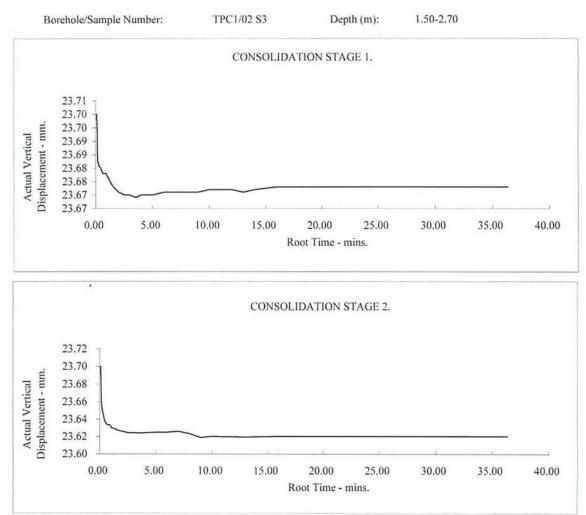

FAILURE CONDITIONS

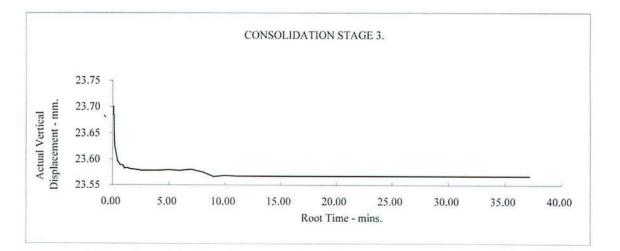
Page 2 of 5

•


Celtest Company Ltd Trefelin Llandegai Bangor Gwynedd LL57 4LH Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81


Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81





Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370

Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE Contract: A55 Warrens Bank Date: 9th February 2010 Test Report Ref.: STR 207383

Page 1 of 5

LABORATORY TEST REPORT

TEST REQUIREMENTS:	To determine the Shear Strength by Direct Shear (Small Shear Box). In
	accordance with BS 1377 : Part 7 1990 : Clause 4

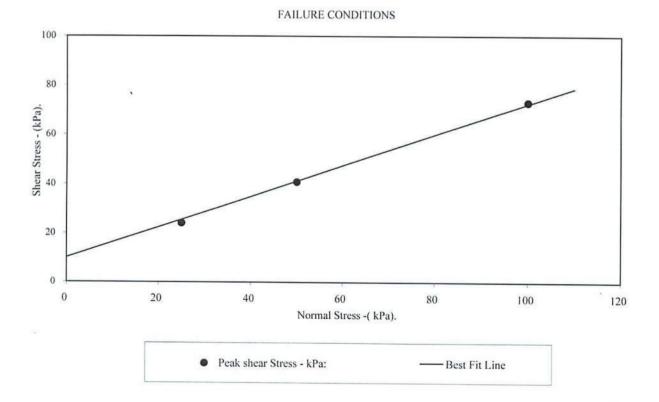
SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S30235 TPC2/02-S2 2.30-3.10 Unknown 01/02/2010 02/02/2010 Unknown Unknown Disturbed Bulk Sample Client Sandy Silt N/A

TEST RESULTS:

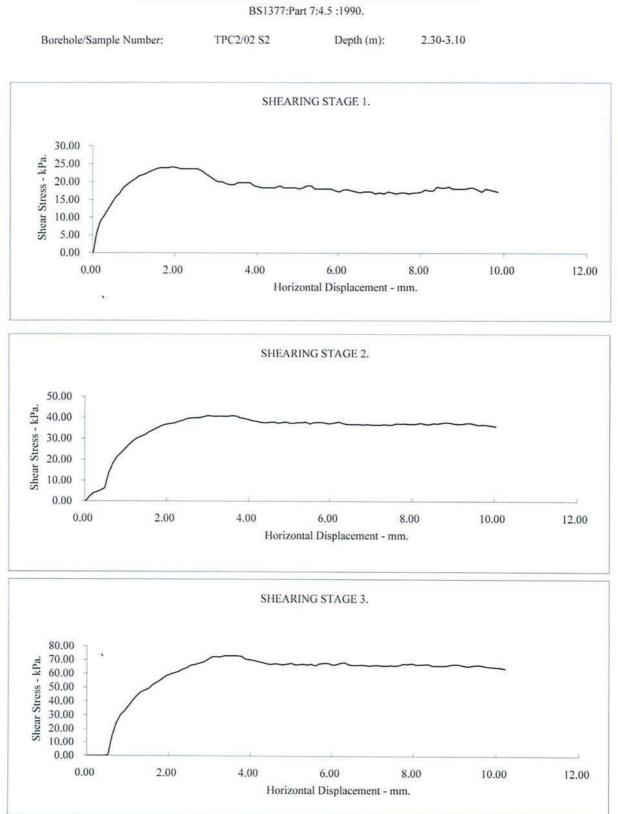
See Attached

() E. R. Goulden, Technical Manager - () E. N. Jones, Soils Laboratory Manager -() G. LL. Evans, Laboratory Manager Approved Signatories


.

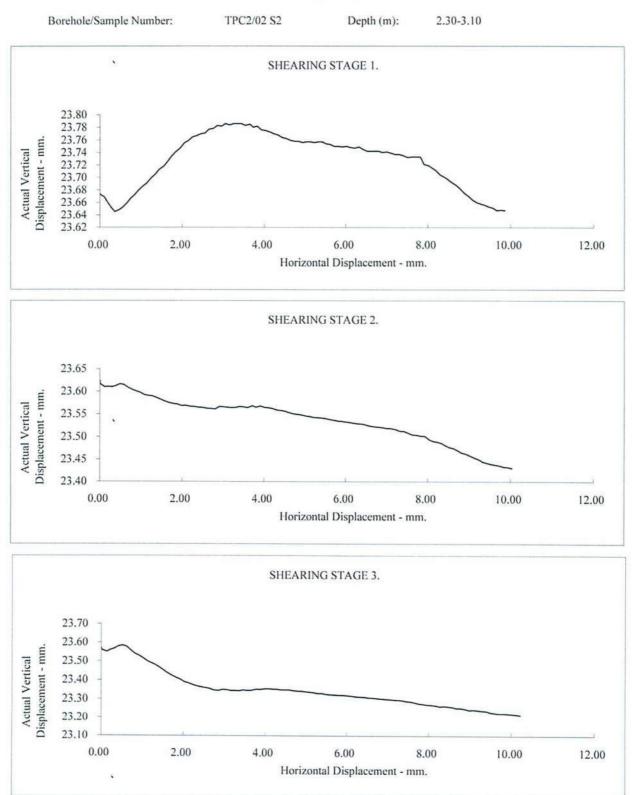
Celtest Company Ltd Trefelin Llandegai Bangor Gwynedd LL57 4LH Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

CONSOLIDATED DRAINED SHEARBOX TEST.


BS1377:Part 7:4.5 :1990.

Borehole/Sample Number:	TPC2/02 S2	Depth (m):	2.30-3.10	
Sample Type:	Remoulded (Light Tamping) Material above 2mm removed.			
Particle Density - Mg/m3:		2.65 (Assumed		
Specimen Tested:	Submerged			
Sample Description:				
Brown silty clayey SAND (find	e-medium).			
STAGE		1	2	3
Initial Conditions				
Height - mm:		23.70	23.70	23.70
Length - mm:		60.00	60.00	60.00
Moisture Content - %:		14	14	14
Bulk Density - Mg/m3:		2.10	2.11	2.12
Dry Density - Mg/m3:		1.84	1.85	1.85
Voids Ratio:		0.4421	0.4360	0.4292
Normal Pressure- kPa		25	50	100
Consolidation				
Consolidated Height - mm:		23.67	23.62	23.57
Shear				
Rate of Strain (mm/min)		0.010	0.010	0.010
Strain at peak shear stress (%)		1.95	3.60	3.65
Peak shear Stress - kPa:		24		73
PEAK				
Angle of Shearing Resistance:(0	H		1	32.0
				10
Effective Cohesion - kPa:				

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81



Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

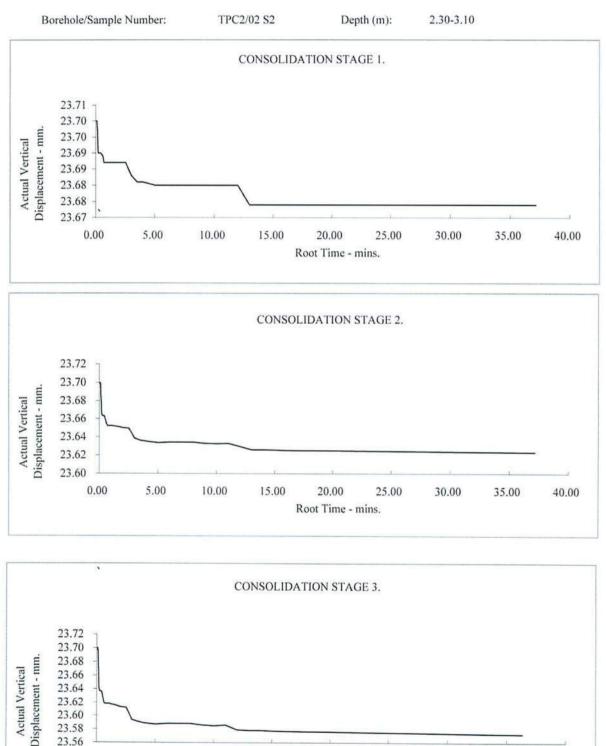
CONSOLIDATED DRAINED SHEARBOX TEST.

BS1377:Part 7:4.5 :1990.

23.64 23.62 23.60 23.58 23.56

0.00

5.00


10.00

Celtest Company Ltd Trefelin Llandegai Bangor Gwynedd LL57 4LH

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

CONSOLIDATED DRAINED SHEARBOX TEST.

BS1377:Part 7:4.5 :1990.

20.00

Root Time - mins.

25.00

30.00

35.00

40.00

15.00

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com

Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE Contract: A55 Warrens Bank Date: 9th February 2010 Test Report Ref.: STR 207403

Page 1 of 5

LABORATORY TEST REPORT

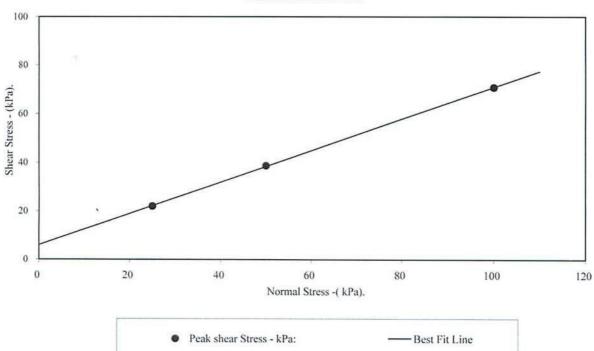
TEST REQUIREMENTS:	To determine the Shear Strength by Direct Shear (Small Shear Box). In
	accordance with BS 1377 : Part 7 1990 : Clause 4

SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S30235 TPF1/01-S1 0.24-1.50 Unknown 01/02/2010 02/02/2010 Unknown Unknown Disturbed Bulk Sample Client Very Silty Sand N/A

TEST RESULTS:

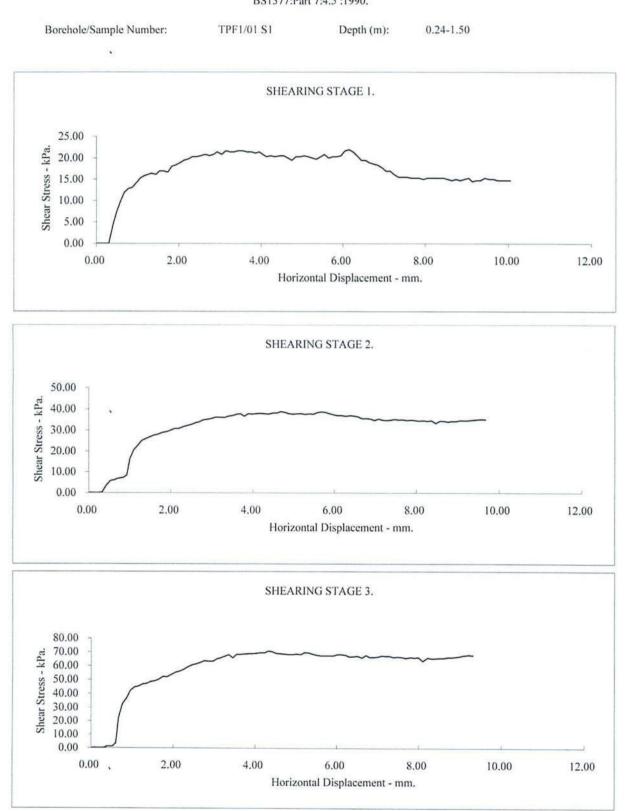
See Attached


() E. R. Goulden, Technical Manager - () E. N. Jones, Soils Laboratory Manager - () G. LL. Evans, Laboratory Manager Approved Signatories

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

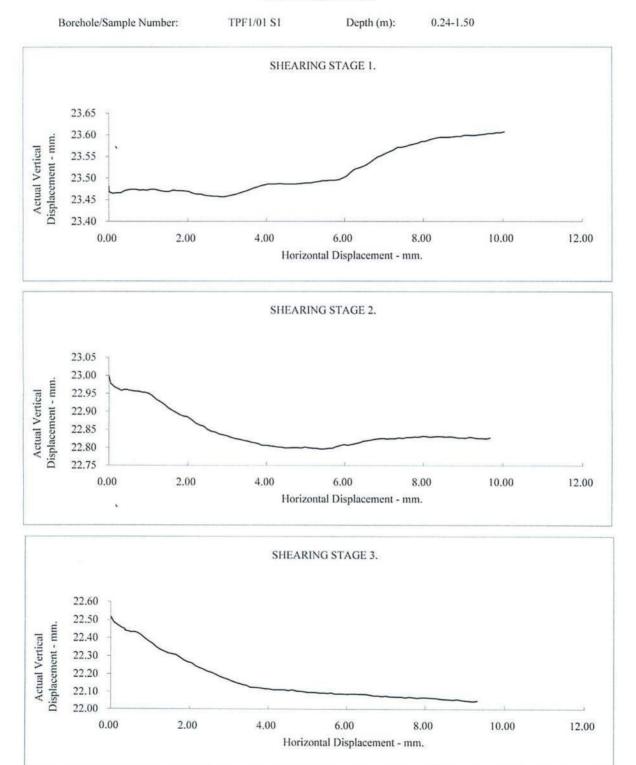
CONSOLIDATED DRAINED SHEARBOX TEST. BS1377:Part 7:4.5 :1990.

Borehole/Sample Number:	TPF1/01 S1	Depth (m):	0.24-1.50	
Sample Type:	Remoulded (Light Tamping) Material above 2mm removed.			
Particle Density - Mg/m3:		2.65 (Assumed	i)	
Specimen Tested:	Submerged		10	
Sample Description:				
Brown silty sandy (fine-mediu	m) CLAY.			
STAGE		1	2	3
Initial Conditions				
Height - mm:		23.70	23.70	23.70
Length - mm:		60.00	60.00	60.00
Moisture Content - %:		19	19	19
Bulk Density - Mg/m3:		2.15	2.13	2.10
Dry Density - Mg/m3:		1.80	1.79	1.76
Voids Ratio:		0.4714	0.4831	0.5043
Normal Pressure- kPa		25	50	100
Consolidation				
Consolidated Height - mm:		23.48	23.00	22.52
Shear				
Rate of Strain (mm/min)		0.01	0 0.010	0.010
Strain at peak shear stress (%)		6.15	5.68	4.32
Peak shear Stress - kPa:		22	39	71
PEAK				
Angle of Shearing Resistance:(0	4			33.0
Effective Cohesion - kPa:				6



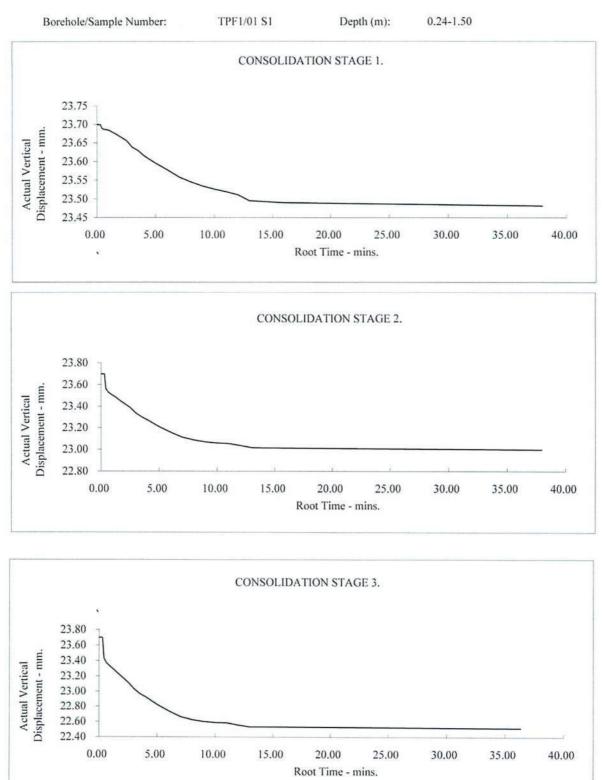
FAILURE CONDITIONS

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81


CONSOLIDATED DRAINED SHEARBOX TEST. BS1377:Part 7:4.5 :1990.

.

Celtest Company Ltd Trefelin Llandegai Bangor Gwynedd LL57 4LH Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81



Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

CONSOLIDATED DRAINED SHEARBOX TEST.

BS1377:Part 7:4.5 :1990.

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370

Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

Atkins, Chadwick House, Birchwood Park, Risley, Warrington. WA3 6AE Contract: A55 Warrens Bank Date: 9th February 2010 Test Report Ref.: STR 207410

Page 1 of 5

LABORATORY TEST REPORT

TEST REQUIREMENTS:	To determine the Shear Strength by Direct Shear (Small Shear Box). In
	accordance with BS 1377 : Part 7 1990 : Clause 4

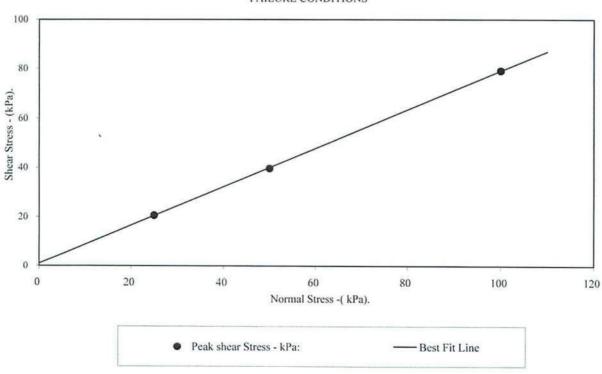
SAMPLE DETAILS:

Certificate of sampling received: Laboratory Ref. No: Client Ref. No: Date and Time of Sampling: Date of Receipt at Lab: Date of Start of Test.: Sampling Location: Name of Source: Method of Sampling: Sampled By: Material Description: Target Specification: No S30235 TPF1/03-S2 1.80-2.10 Unknown 01/02/2010 02/02/2010 Unknown Unknown Disturbed Bulk Sample Client Silty Sand N/A

TEST RESULTS:

See Attached

()/E. R. Goulden, Technical Manager - () E. N. Jones, Soils Laboratory Manager - () G. LL. Evans, Laboratory Manager Approved Signatories



Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

CONSOLIDATED DRAINED SHEARBOX TEST.

BS1377:Part 7:4.5 :1990.

Borehole/Sample Number:	TPF1/03 S2	Depth (m): 1.8	0-2.10	
Sample Type:	Remoulded (Light Tamping) Material above 2mm removed.			
Particle Density - Mg/m3:	2.6			
Specimen Tested:	Submerged			
Sample Description:				
Brown silty clayey SAND (find	e-medium).			
STAGE		1	2	3
Initial Conditions				
Height - mm:		23.70	23.70	23.70
Length - mm:		60.00	60.00	60.00
Moisture Content - %:		19	19	19
Bulk Density - Mg/m3:		2.14	2.11	2.08
Dry Density - Mg/m3:		1.80	1.78	1.75
Voids Ratio:		0.4762	0.4928	0.5172
Normal Pressure- kPa		25	50	100
Consolidation				
Consolidated Height - mm:		23.62	23.61	23.59
Shear				
Rate of Strain (mm/min)		0.010	0.010	0.010
Strain at peak shear stress (%)		6.10	4.17	4.18
Peak shear Stress - kPa:		21	40	79
PEAK				
Angle of Shearing Resistance:(6	4			38.0
Effective Cohesion - kPa:				1

Page 2 of 5

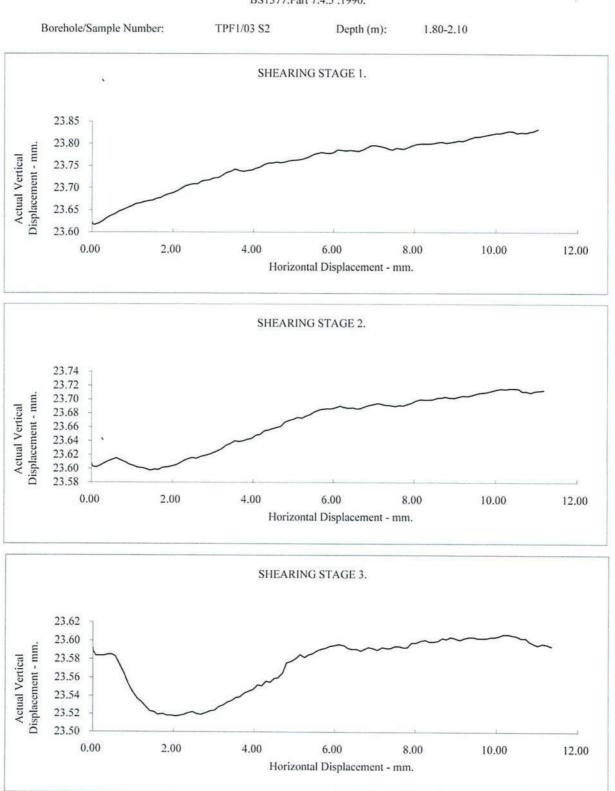

.

Celtest Company Ltd Trefelin Llandegai Bangor Gwynedd LL57 4LH Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

CONSOLIDATED DRAINED SHEARBOX TEST.

BS1377:Part 7:4.5 :1990.

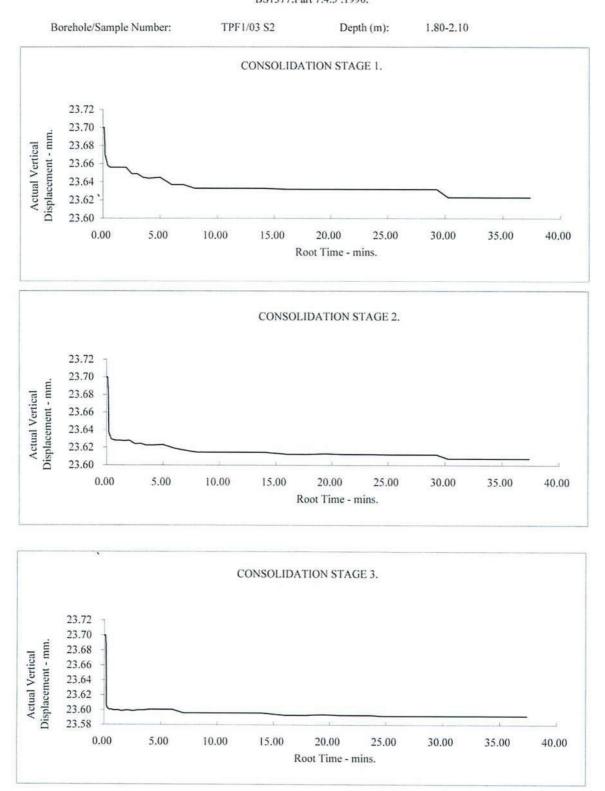
Borehole/Sample Number: TPF1/03 S2 Depth (m): 1.80-2.10



Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370

V.A.T. No. 352-5034-81

CONSOLIDATED DRAINED SHEARBOX TEST.



BS1377:Part 7:4.5 :1990.

Tel: 01248 355269 Fax: 01248 351563 e-mail: postmaster@celtest.com Web: www.celtest.com Registered in Wales and England 1533370 V.A.T. No. 352-5034-81

CONSOLIDATED DRAINED SHEARBOX TEST. BS1377:Part 7:4.5 :1990.

÷

Appendix C Earthworks Specification

GTG0082593/5078488.106/geotechnical overview report v8.docx

CLIENT: Welsh Assembly Government

PROJECT: Warrenhall Enabling Works Cut and Fill Design

- Issue: A
- Status: Final

А	27/1/10	Final	JDW	РС	РС
Issue	Date	Status	Written by	Reviewed by	Authorised

Warrenhall Enabling Works Appendix 6/1

1. This Specification has been prepared for the purpose of the Warrenhall enabling works. The earthworks shall be carried out in accordance with the current Highways Agency Specification for Highways Works. At the time of writing this specification some ground investigation works are being carried out. This specification may be amended after completion of the ground investigation.

2. Acceptable Limits for Fills

The Contractor shall be responsible for the testing, classification and determination of the acceptability of the proposed earthwork materials.

The permitted classes of construction materials are defined in the following tables:

- Table 6/1 Classification and Compaction Requirements
- Table 6/2 Grading Requirements

Embankments shall be constructed of Class 1/Class 2 General Fill unless otherwise indicated on the drawings.

Class 4 materials shall be used as fill to landscape areas. Class 5 materials shall be used for topsoil.

2. Requirements for Determining Acceptability

General

The Contractor shall carry out all necessary testing as detailed at the Manual of Contract Documents for Highways Works Notes for Guidance on the Specification for Highways Works Volume 2 Table NG 1/1 Typical Testing Details and Table 6/1 to demonstrate the proposed materials meet the requirements of the Specification. The classification and confirmation of acceptability of earthworks materials shall be carried out by the Contractor at excavation for on-site materials and at the point of deposition for imported materials.

Trial pit locations for classification purposes of site won material shall be spread across the area of intended excavation to give representative samples of the proposed fill for testing.

Source approval testing is required for all fill materials. To obtain source approval the Contractor shall carry out a full range of the tests detailed in Table NG 1/1 Typical Testing Details and Table 6/1 for the Class of fill on at least 3 representative samples to demonstrate compliance.

Following source approval, acceptability testing shall carried out at the frequencies given in Subsequent testing shall be at the frequencies given in Table NG 1/1 Typical Testing Details.

If, in the opinion of the Designer, the material at the time of excavation or compaction is not of the previously determined classification or has become unacceptable the Designer may require the Contractor to repeat the classification and acceptability tests given in Table 6/1. The rate of further testing required shall be sufficient to ensure the correct classification of materials taking into account the variations in their properties.

Two copies of all test results and their interpretation to Material Class shall be submitted to the Designer within 3 days of the tests being completed.

3. Rendering Unacceptable Material Acceptable

Date: 27/1/10	Document Title :	Warrenhall Enabling Works Appendix 6/1
Issue : A Document Number : 5078488/JDW/		Status A

It is not anticipated that treatment by lime modification/improvement to render soft/weak cohesive materials acceptable will be undertaken for this scheme. If the Contractor proposes lime modification/improvement he shall submit details of his proposals to the Designer for approval prior to incorporating such materials into the Works.

Nuclear density meters calibrated for the various materials on site may be used in place of sand replacement tests, subject to sand replacement tests and laboratory moisture content determinations at a ratio of 1 for every 10 results obtained from nuclear density readings.

Compliance and acceptability tests must be completed prior to covering.

4. Requirements for Groundwater Lowering or Other Treatment

Construction areas shall be kept free of groundwater, infiltration and the effects of weather, and all reasonable measures shall be taken to ensure that the sub-grade is protected.

5. Permitted Use of Rapid Assessment Procedure for Material Acceptability

Where moisture content is specified as the method of material classification and control, the Contractor may use a "rapid" method as an alternative to the BS1377: Part 2 method provided that such "rapid" methods are weekly calibrated against conventional BS methods using drying ovens. The contractor shall submit details of the proposed calibration method to the Designer for review prior to start of the earthworks.

Routine site testing of MCV may use the rapid moisture content assessment procedure of BS 1377 Part 4 where a pre-calibrated repeatable standard can be reliably established and regularly checked. Rapid methods shall not be used for lime modified or lime stabilised materials.

Date: 27/1/10	Document Title :	Warrenhall Enabling Works Appendix 6/1
Issue : A		
Document Number : 5078488/JDW/		Status A

TABLE 6/1: Acceptable Earthworks Materials : Classification and Compaction Requirements (See footnotes)

Clas			General Material	Tracing Use	Permitted Constituents (All subject to requirements of Clause 601 and Appendix	Material Properties Required for Acc Claus	eptability (In Addition to R se 601 and Testing in Clau		Fill Materials in	Compaction Requirements in
Clas	55		Description	Typical Use	6/1)	Property (See Exceptions in Previous	Defined and Tested	Acceptable	Limits	Clause 612
					6/1)	Column)	in Accordance with:	Lower	Upper	
						(i) grading	BS1377: Part 2	Tab 6/2	Tab 6/2	
			Well graded granular	General Fill	Any material or combination of materials.	(ii) uniformity coefficient	see Note 5	10	-	Tab 6/4 Method 2
	1	A	material	General Fill	Any material of combination of materials.	(iii) moisture content	BS1377: Part 2	App 6/1	App 6/1	1 ab 6/4 Metriod 2
						(iv) Moisture Condition Value (MCV)	Clause 632	App 6/1	App 6/1	
						(i) grading	BS1377: Part 2	Tab 6/2	Tab 6/2	
	1	в	Uniformly graded	General Fill	Any material or combination of materials.	(ii) uniformity coefficient	see Note 5	10	-	Tab 6/4 Method 3
General	Ľ	Р	granular material	General Fill	Any material of combination of materials.	(iii) mc	BS1377: Part 2	App 6/1	App 6/1	Tab 0/4 Method 5
Granular Fill						(iv) Moisture Condition Value (MCV)	Clause 632	App 6/1	App 6/1	
						(i) grading	BS 1377: Part 2	Tab 6/2	Tab 6/2	
	1	с	Coarse granular material	General Fill	Any material or combination of materials.	 (ii) effective angle of friction (φ') and effective cohesion (c') 	Clause 636	Ø' = 35°	-	Tab 6/4 Method 5
			material			(ii) uniformity coefficient	see Note 5	5	-	
						(iii) Los Angeles coefficent	Clause 635	-	50	
						(i) grading	BS 1377: Part 2	Tab 6/2	Tab 6/2	
						(ii) plastic limit (PL)	BS 1377: Part 2	-	-	Tab 6/4 Method 1 except: for
	2	А	Wet cohesive material	General Fill	Any material or combination of materials.	(iii) moisture content	BS 1377: Part 2	OMC - 2%	OMC + 2%	materials with liquid limit greater than 50, determined by BS 1377:
	2		wet conesive material	General I III	Any material of combination of materials.	(iv) Moisture Condition Value (MCV)	Clause 632	7	12	Part 2, only tamping or grid
						(v) Undrained shear strength of remoulded material	Clause 633	App 6/1	App 6/1	rollers shall be used.
						(i) grading	BS 1377: Part 2	Tab 6/2	Tab 6/2	
						(ii) plastic limit (PL)	BS 1377: Part 2	-	-	
General	2	в	Dry cohesive material	General Fill	Any material or combination of materials.	(iii) moisture content	BS 1377: Part 2	OMC - 2%	OMC + 2%	Tab 6/4 Method 2
Cohesive Fil	1		bry concerte material	Contortairt in	Any material of combination of materials	(iv) Moisture Condition Value (MCV)	Clause 632	7	12	
						(vi) Undrained shear strength of remoulded material	Clause 633	App 6/1	App 6/1	
		1				(i) grading	BS 1377: Part 2	Tab 6/2	Tab 6/2	
						(ii) plastic limit (PL)	BS 1377: Part 2	-	-	
	2	с	Stony cohesive	General Fill	Any material or combination of materials.	(ii) moisture content	BS 1377: Part 2	App 6/1	App 6/1	Tab 6/4 Method 2
	ſ	Ĺ	material		,	(iii) Moisture Condition Value (MCV)	Clause 632	App 6/1		
						(v) undrained shear strength of remoulded material	Clause 633	App 6/1	-	

TABLE 6/1: Acceptable Earthworks Materials : Classification and Compaction Requirements (See footnotes)

Clas		General Material	Typical Use	Permitted Constituents (All subject to requirements of Clause 601 and Appendix	Material Properties Required for Acc Claus	eptability (In Addition to Re se 601 and Testing in Claus		Fill Materials in	Compaction Requirements in
Cida		Description	i ypical Ose	6/1)	Troperty (dee Exceptions in Trevious	Defined and Tested	Acceptable	Limits	Clause 612
				u:)	Column)	in Accordance with:	Lower	Upper	
					(i) grading	BS 1377: Part 2	Tab 6/2	Tab 6/2	
General					(ii) moisture content	BS 1377: Part 2	App 6/1	App 6/1	
Cohesive Fill	2 D	Silty Cohesive Material	General Fill	Any material or combination of materials.	(iii) Moisture Condition Value (MCV)	Clause 632	App 6/1	App 6/1	Tab 6/4 Method 3
Collesive Fill					(iv) undrained shear strength of remoulded material	Clause 633	App 6/1	App 6/1	
Landscape			Fill to landscape	Any material or combination of materials	(i) grading	BS1377: Part 2	See Note 7	See Note 7	
Fill	4	Various	areas	excluding peat, topsoil and organic soils	(ii) Moisture content	BS 1377: Part 2	-	-	See Clause 620
FIII			aleas	excluding peak, topson and organic sons	(iii) Moisture Condition Value (MCV)	Clause 632	5	18	
Tanaail	5 A	Topsoil, or turf existing on site	Topsoiling	Topsoil or turf designated as Class 5A in the Contract	(i) grading	Clause 618	-	Clause 618	-
Topsoil	5 B	Imported Topsoil	Topsoiling	Material complying with BS 3882	-	-]-	<u> -</u>	-
	5 C	Imported turf	Turfing	Material complying with BS 3969	-	-	-	-	-

TABLE 6/1: Acceptable Earthworks Materials : Classification and Compaction Requirements (See footnotes)

Footnotes to Table 6/1:

- 1 App = Appendix
- 2 Tab = Table
- 3 Where in the Acceptable Limits column reference is made to App 6/1, only those properties having limits ascribed to them in Appendix 6/1 shall apply. Where Appendix 6/1 gives limits for other properties not listed in this Table such limits shall also apply.
- Mhere BS 1377: Part 2 is specified for mc, this shall mean BS 1377: Part 2 or BS 812: Part 3 as appropriate
- Uniformity coefficient is defined as the ratio of the particle diameters D60 to D10 on the particle-size distribution curve, where:
 D60 =particle diameter at which 60% of the soil by weight is finer
 D10 =particle diameter at which 10% of the soil by weight is finer
- 6 Determination of moisture content shall be made from that part of the material passing the 20mm BS Sieve.
- 7 Class 4, 4A and 4P materials shall be of such size that it can be deposited in horizontal layers each not exceeding 450mm loose depth. Isolation boulders may be incorporated provided that the specified compaction is achieved. Class 4B consists of cobbles and boulders.
- ⁸ Subject to the tolerances given in Clause 616, Class 6F material used within 450mm of the designed final road surface shall not be frost susceptible as defined in the test method and procedure of the Transport and Road Research Laboratory Supplementary Report.
- 9 Where determination of the optimum moisture content of granular soils is required and the grading of the material places it in Zone 'X' as defined in BS1377 Part 4 Figure 1, then the omc shall be determined where > 35% of the material passes the 37.5mm BS sieve using a CBR mould. The procedures for soils susceptible to crushing during compaction shall be applied to all relevant soils.

10

Where undrained shear strength is specified as the method of material classification and control, the Contractor may use a hand vane provided that it is initially calibrated against the unconsolidated undrained shear strength laboratory triaxial test to BS 1377: Part 7, clause 8 on 110mm nominal diameter samples, and the Moisture Condition Value (MCV) test in accordance with BS1377: Part 4. The Contractor shall submit details of his proposed hand vane calibration method to the Designer for acceptance prior to the start of earthworks.

- 11 Landscape fill Class 4P shall generally be in a condition that permits it to be transported, deposited, trafficked and shaped by earthworking plant and which will permanently maintain the required earthwork contours.
- 12 Where note 12 is referred to in Table 6/1 the moisture content shall lie in the range necessary to achieve 95% of maximum dry density to BS1377 with the compactive effort specified on omc-dry density relationship as defined by BS1377 Part 4.
- 13 For all fills where MCV and shear strength acceptability limits are provided the MCV compliance criteria shall be used to control the acceptability of the fill material unless agreed otherwise with the Designer.

For Class 2 Fill should testing indicate that the effective angle of friction and cohesion is lower than that specified the Designer shall be consulted who will undertake a detailed slope

14 stability analysis to determine whether the material is acceptable and if any additional measures are required.

CLIENT: Welsh Assembly Government

PROJECT: Warrenhall Enabling Works Cut and Fill Design

Report Title:	Appendix 6/2 Requirements for Dealing with Class U1B and U2 Unacceptable Material
Issue:	Α
Status:	Construction

А	27/1/10	Review	JDW	РС	PC
Issue	Date	Status	Written by	Reviewed by	Authorised

Document Title :

Status A

1. This Specification has been prepared for the purpose of the Warrenhall enabling works. The earthworks shall be carried out in accordance with the current Highways Agency Specification for Highways Works. At the time of writing this specification some ground investigation works are being carried out. This specification may be amended after completion of the ground investigation.

2. Drawing References

There is no available evidence of any Class U1B or U2 material present at the site.

3. Disposal Requirements

Where contaminated materials are encountered, the materials to be disposed of, disposal methods and disposal sites to be used shall be agreed with the Local Authority and the Designer.

4. Known Hazardous Materials

There is no available evidence of contaminated materials being present at the site. Should any information become available during the site works that contaminated materials are present then the information should be provided to the Designer who may specify testing, carry out a risk assessment and determine the required action.

5. Methods of Excavation, Precautions and Requirements for Handling.

Records

The Contractor shall maintain adequate records of the works which shall include, but not be limited to:

- records to establish the volume of materials excavated,
- location of the source of any re-useable stockpiled materials excavated from site
- testing records relating to the re-used materials
- location where stockpiled materials are re-used
- where appropriate the classification of any waste generated
- where appropriate the disposal methods undertaken.

The Contractor shall provide instruction and training to the appropriate workers to enable them to identify visual evidence contamination.

Testing

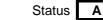
The Designer will specify the testing to be undertaken by the Contractor. All contamination test results shall be submitted to the Designer initially for comment.

Stockpiling / Movement of Materials

The Contractor is responsible for the provision of all necessary waste management licences and permits for stockpiling and movement of waste on and off site.

Requirements for stockpiling and movements of materials shall be agreed with the Designer.

6. Special requirements for dealing with leachate and contaminated water.


Should any leachate or contaminated water be encountered the Designer shall be informed who may specify testing, carry out a risk assessment and determine the required action.

7. Requirements for special drainage and for sealing exposed surfaces of contaminated materials

Not Used

8. Test Methods to be used for Chemical Analysis

Not Used

CLIENT:	Welsh Assembly Government
PROJECT:	Warrenhall Enabling Works Cut and Fill Design

Report Title: Requirements for Excavation, Deposition, Compaction (Other than Dynamic Compaction)

Issue: A

Status: Final

А	27/1/10	Review	JDW	РС	РС
Issue	Date	Status	Written by	Reviewed by	Authorised

Date: 27/1/10	Document Title :	Warrenhall Enabling Works Appendix 6/3
Issue : A Document Number : 5078488.106/JDW/	/App6/3	Status A

1. This Specification has been prepared for the purpose of the Warrenhall enabling works. The earthworks shall be carried out in accordance with the current Highways Agency Specification for Highways Works. At the time of writing this specification some ground investigation works are being carried out. This specification may be amended after completion of the ground investigation.

2. Drawing Numbers

Earthworks requirements are shown on the scheme drawings.

3. Blasting

No blasting is required as part of the proposed works.

4. Cutting Faces

- (a) The extent of excavations remaining to be backfilled that undercut the toes of cuttings and embankments shall not exceed the limits shown on Drawing 5078488/PL/007.
- (b) The tops and bottoms of embankments and cuttings shall be rounded to minimum of 3 metres radius over a length of 1.5 metres.
- (c) **Temporary ditches** shall be provided within 2.0m of the toe of all cuttings immediately upon completion of excavation to facilitate drainage of water. Ditches shall be maintained until permanent drainage measures are constructed at the slope toe.

5. Watercourses

There are no known watercourses that require modification or filling.

6. Embankment Construction

- (a) Fills of more than 2 metres in height shall not at any stage of construction have side slopes steeper than those indicated for the final earthworks outline. Side slopes of fills less than 2 metres height shall not exceed 1(v) to 1.5(h) at any stage.
- (b) Surcharging of embankments other than as specified in the Contract is not permitted.
- (c) Where erodable materials are deposited within 1 metre of the earthwork outline, slopes steeper than 10 degrees shall be covered as soon as possible with topsoil.
- (d) All embankments shall be overfilled by 300mm to provide a protective layer. This layer shall be Class 2 General fill and shall be placed and compacted in accordance with the specification.
- (e) <u>Weather protection</u>

The Contractor's particular attention is drawn to Clause 608 (Construction of Fills) of the Specification for Highway Works. The works shall be protected against weather in accordance with the relevant sub-clauses.

(f) <u>Soft spots</u>

Document Title :

Warrenhall Enabling Works Appendix 6/3

Status A

All areas of embankment foundations shall be proof-rolled prior to fill placement. The proof-rolling shall consist of at least one pass of a smooth-wheeled vibratory roller having a minimum mass per metre roll width of 2100 kg, or other suitable method agreed with the Designer.

Soft spots shall be excavated and backfilled as agreed with the Designer. Soft spots in embankment foundations shall be defined as areas where the soil does not meet the minimum assumed shear strength requirements (assume Cu = 50kPa unless specified on the earthworks drawings). The extent of soft spots shall be determined by inspection during proof-rolling. Soft spot shall be identified by inspection and should be identifiable by the fact that the soil does not support the roller weight during proof-rolling without excessive deformation. Hand vane testing shall also be carried out if necessary.

Records of the foundation inspections carried out, and any remedial measures necessary including the location and depth of any soft spots encountered, shall be made available to the Designer.

Cohesive/granular fill interfaces

Cohesive/granular fill interfaces shall be constructed such that drainage of the interface is towards the edge of the embankment. The slope of the interface shall be such that any water drains to the outside of the embankment. No pockets of granular material shall be formed within cohesive material.

Landscape Fill

Landscape fill used shall be as specified at Appendix 6/1 and shall be compacted in accordance with Clause 620. The Contractor shall ensure that adequate compaction shall be undertaken to ensure the stability of the fill slopes. It is anticipated that compaction will be undertaken using tracked dowsers although compaction plant (rollers) may be required for some areas. The Contractor shall determine the compaction required for each area of earthworks and will depend on the proposed fill height and slope angle, and the nature of the fill to be used. Compaction shall be undertaken in layers not exceeding 450mm loose depth.

7. Compaction

- i. General:
 - (a) Requirements of compaction shall comply with Clause 612.
- ii. Method Compaction:
 - (a) Extra compaction in the top 600mm (below the protective layer) for Class 1 and 2 fill over the full width of the embankments to Clause 612.10 is required.
 - (b) The frequency of field dry density testing shall be as set out in Appendix 1/5.
- iii. End Product Compaction
 - (a) Nuclear surface density gauge (NDG) calibrated for the materials on site may be used for measuring field dry density/moisture content in place of sand replacement tests (SRT). The gauge shall be calibrated in accordance with BS 1377: Part 9.
- 8. Not used.

Date: 27/1/10

Document Title :

Warrenhall Enabling Works Appendix 6/3

Issue : A Document Number : 5078488.106/JDW/App6/3

Status A

9. Benching

Where embankments are to be constructed on ground with a slope steeper than one (vertical) in five (horizontal), such slope being measured at right angles across the width of the embankment.

- ii. Fill material in areas of benching shall be carefully placed and compacted to ensure that no voids occur at the upright steps of the benching.
- iii. Placing and compaction of the fill material shall continue to a level above an adjacent bench before material is placed upon that bench.
- iv. Four additional passes of the roller shall be made on the area within two metres each side of the upright face immediately following the compaction of the first layer of fill material on each bench.
- v. Details for benching shall be agreed with the Designer.

10. Not Used

- 11. Not required at this stage.
- 12 to 15. Not Used

Warrenhall Enabling Works Appendix 6/3

Atkins Limited Chadwick House Birchwood Park Warrington WA3 6AE

Tel: +44 (0)1925 238000 Fax: +44 (0)1925 238500

info@atkinsglobal.com www.atkinsglobal.com